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Abstract

We consider a production economy with many indivisible goods and one perfectly divisible
good. The aim of the paper isto provide some light on the reasons for which equilibrium exists for
such an economy. It turns out, that a main reason for the existence is that supplies and demands of
indivisible goods should be sets of a class of discrete convexity. The class of generalized
polymatroids provides one of the most interesting classes of discrete convexity. [0 2001
Published by Elsevier Science BV.

Keywords: Equilibrium; Discrete convex sets, Generalized polymatroids

JEL classification: D50

1. Introduction

We consider here an economy with production in which there is only one perfectly
divisible good (numeraire or money) and al other goods are indivisible. In other words,
the commodity space of the model takes the following form Z* X R, where K is a set of
types of indivisible goods.

Several models of exchange economies with indivisible goods and money have been
considered in the literature. In 1970, Henry (1970) proved the existence of a competitive
equilibrium in an exchange economy with one indivisible good and money. He also gave
an example of an economy with two indivisible goods in which no competitive
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equilibrium obtains. In 1982, Kaneko (1982) established existence of an equilibrium for
a non-transferable extension of the Shapley—Shubik model. In 1984, Quinzii (1984),
Gale (1984) and Svensson (1984) generalized his result for house markets. There has
recently been renewed interest in exchange economies with indivisibilities and money.
Van der Laan et a. (1997) consider a multi-product generalization of Gal€'s setup. Bevia
et al. (1999) consider an economy with several types of indivisibles and specific
transferable utilities. Danilov et al. (1995) and Bikhchandani and Mamer (1997)
provided a necessary and sufficient condition of existence of equilibria for economies
with transferable utilities.

However, these results do not provide general existence conditions akin to those
prevailing for divisible goods economies. These are well known. These conditions boil
down to continuity and convexity. One could hope that existence of equilibria in
economies with indivisibles should be connected with an appropriate notion of convexity
in the lattices of integer points.

The aim of the paper is to provide a general existence theorem for the Arrow—Debreu
model with indivisibles and money. It turns out that the rationale for existence is that
supplies and demands of indivisible goods be discrete-convex sets. In particular, our
approach clarifies the afore-mentioned existence results.

There are two sets of conditions in the existence issue with indivisibles. The first ones
consist in ‘continuity’ assumptions. They should warrant upper semi-continuity of
demands and supplies with respect to prices and ‘proper’ behavior at the boundary of the
price space. This topological part is common to both divisible and indivisible cases. The
second set of conditions rules the shape of demands and supplies given prices. In
economies with divisible goods, demand and supply should be convex subsets of an
Euclidean space. In economies with indivisibles, demand and supply sets should belong
to some class of discrete convexity.

Let us explain the essence of the matter. Consider an exchange economy with
indivisibles and money (of course we have production in our model, but for the time
being the reader might forget about it). Let D, (p) C Z"* denote the *discrete part’ of the
h-th consumer’s demand, given a price p € Z", h € H. Replace the ‘discrete’ demand
sets D, (p) by their convex hulls co(D, (p)) and consider the convexified economy (with
divisible goods) whose demands are co(D,(p)), h € H. Assume that the sets co(D,(p)),
h e H, are ‘well-behaved’ with respect to prices. Then standard fixed-point arguments
enable to assert existence of an equilibrium price p* for the convexified economy. This
means that the total initial endowment vector X, ,, W, (an integral vector) belongs to the
sum of the convexified demands X, .., co(D,(p*)) =co(Z,cy D, (p*)). Generally
speaking, this does not imply that =, .., W, belongs to the sum of the initial ‘discrete
demands X, .., D, (p*). Our reguirement on discrete convexity of demands ensures that
this implication holds. And therefore, the price p* will be the equilibrium price in the
discrete model.

Thus, to get an equilibrium in the discrete model, we need to ensure that the following
equality holds:

co( > (Dh(p*>) nz~ ZEH D (p*). (*)

heH
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Of course, we should require such an identity for each individual demand, i.e.,
D, (p) = co(D,(p)) N ZX. We call pseudoconvex the subsets of Z" having this property.
But pseudoconvexity of individual demands is not enough to have (*). Indeed, the sum
of pseudoconvex sets might, in general, fail to be a pseudoconvex set'. Nevertheless,
this is not a hopeless case: there are subclasses of pseudoconvex sets, that are closed
with respect to summation.

A class & of pseudoconvex subsets is said to be a class of discrete convexity if it is
closed with respect to sums. Thus, if the sets D, (p*), h € H, belong to such a class &,
(*) holds, and, hence, the discrete model has an equilibrium.

Modulo the topological part of assumptions, our existence theorem (Theorem 1) states
that equilibria in a discrete economy with money exist if the discrete parts of demands
and supplies belong to some class of discrete convexity. Therefore, the discrete
convexity of supplies and demands is, in our opinion, the true reason for the equilibrium
existence in economies with indivisibilities.

However, finding both the rationale and the proper condition is only a half of the job.
(Similar in spirit conditions appeared in Danilov et al. (1995) for a general case and in
Bikhchandani and Mamer (1997) for a case of transferable utilities.) The second half
consists in finding non-trivial interesting classes of discrete convexity. Fortunately, there
are many classes of discrete convexity. The most interesting one with respect to the
problem considered here is the class of integral generalized polymatroids (see Section 5).
We also give a few examples of utility functions generating polymatroidal demands. In
particular, in al afore-mentioned models (Henry, 1970; Kaneko, 1982; Gale, 1984;
Quinzii, 1984; Svensson, 1984; van der Laan et al., 1997; Bevia et al., 1999) which dealt
with existence of equilibria, demands turn out to be sets of the class discrete convexity
associated with integral generalized polymatroids.

Remark. The authors became aware, after submitting their paper, of an article by Gul
and Stacchetti (1999), in which some existence theorem for economies with indivisibles
presented in single units and money is proven. Demands and supplies in this model also
turn out to be sets belonging to the class of discrete convexity associated with integral
generalized polymatroids. We will return to this question in another paper.

2. Model and definitions

We consider a production economy with a finite number of consumers and producers,
a finite number of indivisible goods, and one perfectly divisible good. Indivisible
commodities form only a part of the whole economy, the other part is represented by
means of a perfectly divisible aggregate good, called money. We denote by K the set of
indivisible goods. The commodity space of the model takes the form Z* X R.

Thereis afinite set L of producers. A producer | € L is described by its cost function
¢:Z% -~ RU{+ o}, ¢(0)=0, ¢ isamonotone function. This means that producers use

"Emmerson (1972) mistakenly assumed that the (*) always holds.
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only this aggregate divisible good as productive input. The producer | produces a vector
of discrete goods Z € Z" at the cost of using ¢(Z) of money. If ¢,(Z)= + o, then
producer | cannot produce Z.

There is a finite set H of consumers. Consumer he H has a preference <, on
Z" X R,, which is a complete, closed, and transitive hinary relation. We assume that
preferences are increasing in indivisibles and strictly increasing in money. Each
consumer h € H is endowed with a vector of initial endowment (W, w,) € Z% X R,
and shares in the firms §,=0, | €L, (2, 6,=1for any | €L).

Thus, a discrete economy € is a collection

€ ={(=n, W, W,), (6,). 1 €L),h€H; (), | €L}

Markets and production are assumed to be perfectly competitive. We normalize prices in
such away that the price of money equals 1; and we define prices of indivisible goods as
a positive linear functional on Z*, or, simply, a nonnegative vector p € R, p(X) =
Siex PX", where p=(pexs B ER,, X=(X)ey, X EZ.

Given a price p, each producer | € L maximizes the following program:

max (p(Y) = &(Y)) e

Denote 7( p) = max(p(Y) — G,(Y)).
Each consumer h € H seeks a best element (X,,, m,,) with respect to the preference <,
in the budget set

By(p) ={(X, M € Z§ X R, | p(X) + m= B,(p)},

where the income, B,(p), is defined by
Bu(P) = POWE) + W, + 2, 6, 7(p).

Definition 1. A tuple ((X,, M)nen; )ie; P) is a competitive equilibrium in the
economy & if

(@ Y, isasolution to (1), | €L,

(b) for each h & H, (X,,, m,) is a best element in the budget set B, (p) with respect to
the preference <,

(©) all markets clear:

> X=2 W+, )

heH heH leL

2 m, +|§— ¢ () :th Wi, (3

heH

As preferences are strictly increasing with respect to money, the clearing of the
indivisible goods markets implies that of the money market.
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3. Discrete convexity and the existence issue

Here we present a general existence theorem for production economies with
indivisibles and money. In order to emphasize the discrete aspect of the existence, i.e., a
‘proper’ notion of convexity in the lattices of integral vectors, we state it in a conditional
form, omitting topological issues.

Given a price p, denote by

S(p) = Argmaxycz« (P(Y) — ¢ (Y))

the supply of the producer | €L. Each consumer h chooses a best element (X,
m,) € B,(p) with respect to the preference =<,. Monotonicity of preferences implies
p(X,) + m, = B,(p). Denote by D,(p) the set of all Xhel'i such that (X,, B.(p) —
p(X,)) is a best element in the budget set B, (p) with respect to the preference <. An
equilibrium exists whenever we find a price p* such that the following inclusion

2 W€, Dy(p)~2 S(p*) (4)
heH heH leL

holds, where the sum of sets is defined as the Minkowski sum, A+B={a*b|ae

A beB}.

Suppose the discrete economy & has been convexified. That is we have a new
economy co( &) with divisible goods (whose commodity space is R X R) in which
individual demands and supplies are the convex hulls of demands and supplies of the
initial economy &.

Namely, in the convexified economy, for a price p, the demand of the h-th consumer
is the set {(x, B,(p) — p(X)), X € co(D,(p))}, where co(-) denotes the convex hull of a
set. The supplies of co( &) are given by co(S(p)), | € L. The profits of the producers in
co( &) are equa to their profits in &.

Assume now we have an equilibrium of the economy co(€)?, i.e., there exists a price
p* such that

heH

> W, ethco(Dh( p*)) —EL o(§(p*)). (5)

When (5) implies (4), p* is also an equilibrium price for the discrete economy &. But,
this implication does not hold for arbitrary discrete sets, and, thus, equilibria might fail
to exist. We can see this in the following simple example.

Example 1. There are two agents and two types of goods, H = K = {1, 2}. The utilities
of agent are u (X', X%, m)=2min(X*, X?)+m, u,((X', X?), m)=min(2X"+
2X?% 2) +m. Since these utilities are quasi-linear in money, we do not specify the
individual initial endowments and define only the aggregate endowment (2 = (1, 1) of
indivisible goods. In the convexified economy, there exists a unique equilibrium price

*There are many results of existence of equilibria in economies with divisible goods, see, for example Arrow
and Hahn (1971); McKenzie (1987); we also establish an existence result in the next section.
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p* = (1, 1). At the price p*, the agents’ demands are respectively co({(1, 0), (0, 1)}) and
co({(0, 0), (1, 1)}), and x, = (1/2, 1/2), x, = (1/2, 1/2) are the equilibrium allocations.

But this price p* is not an equilibrium price of the initial discrete economy. In fact, at
the price p* =(1, 1), the demands of agents are D,(p*)={(1, 0), (0, 1)} and
D,(p*) ={(0, 0), (1, 1)}, respectively. The initial endowment (1, 1) belongs to the sum
of convexified demands co({(1, 0), (0, 1)}) + co({(0, 0), (1, 1)}), but does not belong to
the sum of their discrete counterparts, {(1, 0), (0, 1)} + {(0, 0), (1, 1)} ={(0, 1), (1, 0),
(1, 2), (2, 1)}. For those sets, (5) does not imply (4). O

We introduce now our main notion.

Definition 2. A set 9 of subsets of Z" which satisfies the following axioms DC1 and
DC2 is said to be a class of discrete convexity.
DCL1. For any A € 9, there holds

A = (co(A)) N Z"~.

DC2. For any A and B € 9, we have AxB € 9.

Given aclass & of discrete convexity, suppose D, (p*), h€H, and S(p*), | €L, are
sets of 9. Then, the implication (5)00 (4) holds. In fact, because of DC2, the set
A=3, _, D, (p*)— 2, S(p*)belongstotheclass &. Since 3, ., W, EZ" and 3, _,
W, €EcoA=2, ., coD,(p*) —2,c. coS(p*), we conclude that DC1 implies =, .,
W, € A

Thus, we obtain the following conditional theorem.

Theorem 1. Let & be a discrete economy. Assume (1) there exists an equilibrium price
p* for the convexified economy co( &); (2) there exists a class & of discrete convex sets
such that, at the price p*, the demands D, (p*), h&€H, and supplies §(p*), | €L,
belong to &. Then p* is an equilibrium price for &.

Discrete convexity of demands and supplies is the main condition, which needs to be
added to topological conditions, to ensure existence of equilibrium for discrete economy
with money. We do not state that this condition is a necessary condition in a formal
sense; it could occur that an equilibrium exists without discrete convexity. However, just
as convexity is a ‘necessary’ condition for economies with divisible goods, the discrete
convexity is a ‘necessary’ condition for economies with indivisibles and money. We can
also say that our existence result does not rest upon any specifics of initial endowments
and upon the number of agents.

In Section 4, we provide some topological conditions, ensuring that condition 1 of
Theorem 1 is satisfied, and in Section 5, we consider an interesting class of discrete
convexity associated with integral g-polymatroids.

Let us display the power of Theorem 1 in the following example. In this example we
highlight the reason underlying the existence of equilibrium in Gale’'s model (Gale,
1984).
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Example 2. Gale considers an exchange economy in which each trader owns one
indivisible object (one may think of these objects as houses). Therefore, we can identify
the set K of objects with the set of traders H. In other words, the initial endowments
W, =1,, h€H, where, for ScK, 1, denotes the vector in R with coordinates
(L) =1, if ke S and 0 otherwise, k € K.

The trader’s preferences are such that no trader desires more than one object. Gale
does not introduce explicitly trader's preferences in his model, instead he specifies
trader’s demand at each price.

Given a price p € R", the demand of the trader h, D, (p), is a subset of {0} U{1,,
h & H} (this holds because traders desire no more than one object). From the Gal€'s
assumptions it follows that the demand correspondences p — D, (p) are upper semicon-
tinuous and have ‘regular’ behavior with respect to the boundary values of prices. In
other words, the assumptions are ‘topological’ indeed. They warrant existence of an
equilibrium in the convexification of his exchange economy, i.e., there exist p* € R"
and x, € co(D, (p*)), h &€ H, such that

> X =Ly (6)

heH

The equality (6) breaks down to the following list of equalities

> Xpn = 1forany h’ € H, (7

heH

where X, denotes the h’-th coordinate of x,. Moreover, every x, being a convex
combination of vectors of the set {0} U {1,,,h’ € H}, satisfies the inequality

> X, =1, heH. (8)

h'eH

By (7), al inequalities (8) are tight. Hence, the matrix (X, ) is doubly stochastic. By
Birkhoff's theorem, there exists a permutation 7:H - H with x,_,, >0, heH. This
meansthat 1_,, € D,(p*). Therefore, the bundle (p*, (X, = 1, ))hen) isan equilibrium
of the discrete economy.

In the development above, there is a clear split between topologicaly based and
discretely based arguments. The use of a fixed-point theorem is the topological
argument; and the use of the Birkhoff theorem is the discrete one. Of course, the calling
for the Birkhoff theorem is based on a particular feature of the agents demands in his
models: consumers need no more than one item, i.e., demands are subsets of {0} U K.

In our set-up, the topological part remains unchanged. But the discrete part, i.e. the
going from ‘divisible’ equilibrium allocation to an indivisible allocation, differs.
Namely, we pointed out that the sets D, (p) consist of integer points of some faces of the
simplex 4 =co(0, 1, ..., 1). The faces of A are the smplest integral g-polymatroids,
and, as we will see later on in Section 5, the class of integral g-polymatroids is a class of
discrete convexity. Therefore, the demands in Gale's model are discrete-convex sets, and
this is the ‘discrete’ reason underlying the existence of equilibrium here. [J
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4. Existence of equilibria in the convexified economy

Here we describe a convexification procedure for a discrete economy and provide
conditions which warrant existence of equilibria in the associated convexified economy.

4.1. Convexification

Suppose & is a discrete economy, as in Section 2. We shall convexify & by
convexifying its cost functions and preferences.

Let f:Z* - RU{+ =} be a function. Denote by epi(f): ={(x, t) € Z X R|t =f(x)}
the epigraph of f. The convexification of f is a function co(f):R* - R U { + =}, whose
epigraph is the closure of epi(f), that is epi(co(f)) =co(epi(f)). Equivaently, we might
define co(f) as the supremum of affine functions h:R* - R such that h(X) = f(X), for
every X € Z". We implicitly assume here that such affine functions exist. Clearly, co(f)
is a closed convex function, i.e., its epigraph is a closed convex set.

Definition 3. A function f:Z" — R U { + =} is said to be pseudoconvex if a) co(epi(f)) is
a closed subset of R* X R, and b) for every X € Z", there holds f(X) = co(f)(X). A
function f:ZX -~ RU{— o} is said to be pseudoconcave if — f is pseudoconvex.

It follows from a) that, for any x € R", there exist points X,, Xy, ..., X, |[K|=n, in
7" and weights ag,ay, .. .,a, (¢, =0, =", a, = 1) such that co(f)(x) ==, « f(X).

The convexification of the cost functions is straightforward from the definition. To
define a convexification of preferences, we need to make some assumptions.

Assumption 1. For any agent h€ H and for every bundle Y € Z% there holds
(W, wp) > (Y, 0). O

This assumption is akin to ‘abundance of money’, and, in particular, it states that each
consumer has a positive endowment of money. Assumption 1 is rather strong; it could be
weakened, however not disposed of.

Remark. Since equilibrium allocations are individually rational allocations, the shape of
the h-th agent preference on the set {(X, m) € Z" X R |(X, m) < n(W,, W)} isirrelevant.

Assumption 2. For any agent h€ H and any (X, m) with m= 0, there exists a certain
amount of money m’ € R, such that

O,m)=,Xm. O

This assumption means that money can substitute any quantity of indivisible goods, and,
in particular, implies that any bundle (X, m) possesses a money equivalent. In fact, if
t,(X, m) denotes the infimum over all m’ with (0, m’) >, (X, m), then, it is easy to see
that, (0, t, (X, m)) ~ ,(X,m). Denote by m’ the money equivalent of the initial endowment
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(W,, w,). According to Assumption 1, for any m=m; and X € Z, there exists a unique
number g,'(X) = 0 such that (0, m) ~ (X, gp(X)). The graph of q,'(X) is the ‘indifference
curve' of <, passing through the point (O, m). Thus, we can represent a preference <
(satisfying Assumption 2) together with the money equivalent of a vector of initial
endowments by the family of functions g™ on Z%, m= my.

Lemma 1. This family of functions q"(X), m=m,, has the following properties: (1)
g"(0)=m, (2) q"(X) is decreasing in X, (3) q"(X) is (strictly) increasing in m, (4)
g"(X) - 4+ with m - +, 5) q"(X) is continuous in m. Conversely, a family of
functions q™(X) with properties (1)—(5) defines a preference < which is continuous,
increasing in X, strictly increasing in money, and which satisfies Assumption 2. [

Proposition 1. Suppose that functions ™:Z" — R (m=m,) have the properties (1)—(5)
and are pseudoconvex. Then the functions co(q™):R" - R also satisfy properties

(D=(5)-

Proof. Properties (1)—(4) are ailmost obvious. Let us prove the property (5). Let m=m,
and let m’ be sufficiently close to m. Consider, to begin with, the case m’=m. Let
xER" andlet X, and a; (i =0, ..., n) be such that co(q™)(x) = =, a;q"(X). Since, for
al i, there exists € such that co(qm')(xi) =co(qM)(X) + € we have

co(q™)) =2 aco(q™)(X) =2 aco(q")(X) + €.

Consider, now, the case m’ = m with m’ tending to m. Let x € R and let X/ and o/ be
(i=0,...,n) the corresponding points and weights for m’ such that x==, «/X/ and

co(q™ ) =2 aco(q™ )(X;).

We can suppose that each sequence « converges to some (limit) weight «. Let ay, . . .,
ag be positive and «,, ,, ..., a, be equal to 0. Then we can suppose that sequences
Xgs -+ -+ Xo aso converge (and stabilize) to some (finite) points X,, . .., X.. In fact, if,
say, X, is unbounded, then = «/X/ moves away from the point X, but this cannot
happen. Now,

co(q™)() — co(q™)(X) =X a/q"(X/) =2 a/q™ (X{) =2 /(q"(X/) — " (X/))
=2 al(d" ) =" )+ 2 (@) —a" (X))
i= i=s+
When m' is sufficigntly close to m, the first term is small because it is equal to
32 0a(9"(%) — g™ (X)). The second term is also small, since a_, ,, ..., @, are small

and q™(X/) — g™ (X/) are bounded (because q"(X/) = g™ (0) and ™ (X/) =0). Q.E.D.

Assumption 3. The functions gy, (h€H, m= mg) and the cost functions ¢, (I €L) are
pseudoconvex functions. [J
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By Lemma 1 and, for each h, the families of functions co(q,') determine a preference
on R% X R, , which we call the convexification of =<, and denote by co(< ).

Thus, we have a convexified produced economy co( &), whose commodity space is
R X R, whose initial endowments are (W, w, ), h € H, whose shares in the firms are
8, | €L, heH, whose preferences are co(=<,), h&€ H, and whose cost functions are
co(g), | L.

We assert that, for any price p € RY, there holds

S(p) = co(§(p). | €L, (9)

Dy(p) = co(D,(p)), hEH, (10)

where §(p) = Argmax,, .« p(y) — co(,)(y), | €L, D,(p) is the set of al x& R’ such
that (x, B,(p) —p(X)) is a best element in the budget set B,(p) ={(X, m) € R x
R, | px') + m= B,(p)} with respect to the preference co(<,,), h € H.

Let us prove Egs. (9) (the equalities (10) are proven similarly). The inclusion C is
trivial. Let now xeé(p), that is

p(X) — co(c)(x) = p(y) — co(c)(y)

for any yERY. Let x==, X be the convex representation such that co(c)(x) = =,
a,c(X). Then, for each i,

P(X) — c0(©)(X) = PX,) — co(E)(X,) = P%;) — C(X). (11)
Multiplying (11) by & and summing up, we have

p(x) — co(e)(x) 22 a,(pO%) — €(%;)) = p(x) — c(x).
We see from this that p(x) — co(c)(x) = p(X,) — c(X,) if a; 0. Therefore

P() — (%) = p(Y) — c(Y)

for every i and Y€ Z%, that is X, € Y p) and x € co( p)).

Thus, the economy co( &) is the convexification of & in the sense of Section 3. We
need the last assumption in order to ensure existence of equilibria in the convexified
economy co( &).

Assumption 4. The total endowment of discrete goods is strictly positive: =, .., W, > 0.
The cost functions have the following property: c,(Y) - + o with |[Y|| - 4+, | €
L O

The second part of Assumption 4 is the ‘no-free-lunch’ condition. It holds, for
example, if ¢,(Y)>0 for Y=0.

Proposition 2. Let &€ be a discrete economy and let Assumptions 1-4 hold. Then a
competitive equilibrium exists in the convexified economy co( &).
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For a proof see Appendix A.

To combine this proposition with the conditional Theorem 1, we strengthen
Assumption 3. Since we do not know which price would be an equilibrium price in the
convexified economy, we need to assume supplies and demands be sets of some class of
discrete convexity & for any price.

Definition 4. Let 9 be a class of discrete convexity in Z". A pseudoconvex function
f:7 - RU{+ =} is said to be Z-convex if for any linear functiona p € (R*)* holds

Argmax (p(X) — (X)) € 2.

xezKk

Assumption 3'. There exists a class & of discrete convexity such that the functions g,
meR,, heH, and the cost functions ¢, | €L, are &-convex functions. [

Thus, we have the following existence theorem.

Theorem 2. Let & be a discrete economy and let Assumptions 1, 2, 3" and 4 hold. Then
a competitive equilibrium exists in &.

4.1.1. The case of transferable utilities

The special case of economies with transferable utility is interesting because the
existence of equilibrium can be obtained as a solution to an auxiliary optimization
problem. Moreover, we use this optimization problem in our proof of Proposition 2.

Recall, that a preference < on R¥ X R is said to be transferable (quasi-linear in
money) if it can be represented by a utility function of the form U(X, m) = u(X) + m
with some function u: R - R.

Let € be an economy with divisible goods and transferable utilities; consumers
utility functions are u,:R", - R, h € H, and producers cost functions are ¢;: R -~ RU
{+o}, I EL.

Assume that functions u,, (h € H) are closed concave, and that functions ¢, (I €L) are
closed convex.

Given a price p, the demand D, (p) of the h-th consumer is defined as the set of
solutions to the problem

max (u,(x) = P(x)- (12)

The supply S(p) of the I-th producer is the set of solutions to
max (p(9) - (). (13)

A tuple (X)nens (V1)iel, P) is said to be an equilibrium of the economy %={(uh,
W,),h€H, ¢,| €L} with transferable utilities if, for every he H, x,, € D, (p), for every
I €L, vy, €S(p) and the equality =, .., X, = Z,cq W, + 2,2, Y, holds.

We remind that equilibriain economies with transferable utilities can be obtained with
the help of solutions to an optimization task. In fact, consider the following aggregate
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utility and aggregate cost functions. The aggregate utility function U is given by the
co-convolution

Ux) = sup > un(X,) } xERX.
E Xp=X, XhERli heH
heH

The aggregate cost function C is given by the convolution
Cly)=infs, _ yenx {lELcl(y.)}, yERK.
leL S

Proposition 3. The aggregate functions C and U have the following properties:

p) =|§L S(p), (14)
and
D(p) =th Oy (P), (15)

where §(p) denotes Argmax(p(y) — C(y)), D(p) denotes Argmax(U(xX) — p(x)), S(p): =
Argmax(p(y) — ¢,(y)), and D, (p): = Argmax(u,(X) — p(x)).

Proof. Let us prove (14); (15) is proven similarly. By definition of the convolution, the
epigraph of C is equal to the closure of the sum of the epigraphs of c,. Since ¢, =0, its
epigraph is a subset of the positive orthant R X R, . Since the sum of closed convex
subsets of RS X R, is closed (see, for example, Rockafellar (1970)), we have

epi(C) =2 epi(c,). (16)

(14) is now obtained from (16) by means of well-known properties of the summation
operation. Q.E.D. A

An equilibrium of the economy & exists if and only if there exists a solution to the
task

max U(W +y) — C(y), (17)

where W=Z2, .., W,. Indeed, since equilibria are Pareto optimal, any equilibrium
alocation gives a solution to (17). Conversely, let y* be a solution to (17). Then we
have

C(y) — C(y*) =U(W +y) —UW +y*)

for any y € R". On the left hand side, the function is concave; on the right hand side,
the function is convex. Therefore there exists a separating linear functional, and we can
take any such functiona to figure an equilibrium price. By (14) and (15), we can
disaggregate both the vector W + y* into optimal consumers's solutions and the vector
y* into optima producers solutions. [

When, for example, the individua utility functions are bounded and C(y) — + o with
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lyll - + o, a solution to (17) exists. In such a case, the concave function U(W +y) —
C(y) goesto — « with ||y|| - + . Existence of a solution is also warranted, when the
cost functions have bounded effective domains®. Note that if we set c(0)=0 and
c(Y) = + o for Y= 0, this yields precisely a pure exchange economy.

Now, we consider utility functions of the form U(X, m)=u(X) + m with some
function u:Z" - R, u(0) = 0. In a discrete economy with transferable utilities, just asin
the divisible case, the demand of the consumer h, at a price p, is defined as the set of
solutions to the problem

maXy 7% (Un(X) — P(X))- (18)

A tuple ((X)nen (Y) e, P) is said to be an equilibrium of an economy &"“ =
{(u, W), heH, ¢,| €L} with transferable utilities if, for every h€H, X, is a solution
to (18), and if, for every | €L, Y, is a solution to (1) and the balance (2) holds.

An equilibrium of the convexified economy co(€") exists if utility functions are
pseudoconcave, and if cost functions are pseudoconvex, and if (17) has a solution for
their convexified counterparts.

Thus, by our conditional Theorem 1, we have the following existence theorem for
discrete economies with transferable utilities.

Theorem 3. Let €™ be a discrete economy with transferable utilities. Suppose, for some
class & of discrete convexity, that the utility functions u,, (h € H) are Z-concave and
the cost functions ¢, (I € L) are Z-convex with bounded effective domains. Then there
exists an equilibrium in €".

Remark. Theorem 3 states existence of equilibrium in terms of individua utility
functions and cost functions. Since the disaggregation of a solution to (17) yields an
equilibrium in models with transferable utilities, a necessary and sufficient condition of
existence equilibrium for €™ can be formulated in aggregate terms (see, for example,
Danilov et a. (1995) or Bikhchandani and Mamer (1997)). An equilibrium for the
economy Z" exists if and only if there exists a Pareto optimal allocation of indivisible
goods in the economy ", which would be Pareto optimal in the convexified economy
co( €"). However, this necessary and sufficient condition is of little interest, because of
its aggregate formulation. [

Here, we have established existence of equilibrium for a discrete economy modulo a
hypothetical class & of discrete-convex sets. However, our results would have no big
value, if we could not provide interesting examples of such classes. In the next section,
we show that there exists an interesting class of discrete convexity, namely, the class
associated with integral generalized polymatroids. We also show that in all known
models of exchange economies with indivisibilities and money, in which equilibria exist,
the demand sets belong to such a class.

*The effective domain of afunction is the subset of the domain of definition where the function does not equal
+ oo,
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5. Discrete-convex sets and functions

Here we demonstrate how to construct some interesting classes of discrete convexity.
We will construct them as integer points of integral polyhedra. A polyhedron is the
intersection of a finite number of closed halfspaces. A polyhedron P C R" is said to be
an integral polyhedron if P = co(P(Z)), where P(Z): =P N Z".

Assume a class 2 of polyhedra with the following properties

DCP1. Any polyhedron P € 2 is integral.

DCP2. For any polyhedra P, Q € #, we have P=Q € # and

(P=Q)(2) =P(2)*Q(2). (19)

A class of polyhedra & satisfying properties DCP1 and DCP2 is said to be a polyhedral
class of discrete convexity. Given a class & of discrete convex polyhedra, the class
G(P) of subsets of Z*, D(P) ={P(Z), P € P} satisfies DC1 and DC2, that is a class
of discrete convexity. We say that the class Z( %) is associated with the polyhedral class
P.

We may always assume that a polyhedral class of discrete convexity & contains all
singleton sets of integer points. For such a class 2 of polyhedra, (22) is equivalent to
the following property, which is more convenient to check out,

P N Q contains an integer point if non empty. (20)

It is easy to see that (20) < (19): Let X € Z" be some integer point of P — Q, that is
X=p—q, p€EP, q€Q. Then the intersection of P and Q + X is non-empty and,
because of (20), P N (Q + X) is an integral polyhedron. Therefore, we can choose p and
q in Z", hence, the implication (20)0 (19) is shown. In the other direction: if
PNQ#®, then 0€ P — Q. According to (19), 0 is obtained as the difference of two
integer points of P and Q, i.e. PN Q contains an integer point.

In dimension one, the class of al integral polyhedra (which are segments with integral
endpoints) is the polyhedral class of discrete convexity. Thisis, of course, not the casein
higher dimensions (see, for example, Example 2). In higher dimensions, to get a class of
discrete convexity, we need to narrow the class of pseudo-convex sets.

Example 3. Hexagons. Consider a class 9 of polyhedra in R® which consists of
polyhedra defined by the inequalities a, =x, =b,, a, =x,=b,, c=x, + X, =d, where
a,, a,, b,, b,, c and d are integers. It is easy to check that such hexagons (generally
speaking they can degenerate to polyhedra with smaller number of edges) has integral
vertices. Since the intersection of hexagons of 7 is a hexagon of 7, by (20), we
conclude that 7 is a class of discrete convexity. [

Observe, that the edges of those hexagons are parallel to either e, e, or e, — e,
(where we denote by e, and e, the standard basis of Z?). These vectors have the
following property: if we take any two of them, then this pair will form a basis of the
lattice Z°. As one can see from Example 1, if a class of integral polyhedra of R”
contains polyhedra, whose edges are parallel either e, — e, or e, + e,, then it cannot be
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a class of discrete convexity. In fact, the pair of vectors e, — e, and e, + e, does not
form a basis of Z*: for example, a point of the form (2n+ 1)e,, n € Z, will never be
obtained as a linear combination of the vectors e, —e, and e, +e, with integer
coefficients.

Moreover, the property that ‘for a given collection of integral polytopes, any linear
independent subset of |K| primitive vectors, which are paralel to edges of these
polytopes form a basis of the abelian group Z"' is crucial for the collection to be a
polyhedral class of discrete convexity.

Let us introduce the following notion: A collection % of vectors of R is said to be a
unimodular system if, for any subset RC %, the abelian group Z(R) ={Z, ar,|r, €
R,a € Z} coincides with the abelian subgroup R(R) N Z", R(R) ={Z, ar,|r,ER a €
R}. We now give a precise statement (for proof see Danilov and Koshevoy, 1998).

Theorem 4. Let 2 be a collection of integral pointed polyhedra of R closed under
taking faces. Let %( 2) denote the set of primitive vectors in Z, which are parallel to
edges of polyhedra of 2*. Then 2 is a class of discrete convexity if and only if (%) is
a unimodular system.

Recall that a polyhedron is said to be pointed if it has at least one vertex. Of course, a
polytope is a pointed polyhedron.

Remark. Since, in our model, convex hulls of demands and supplies are subsets of R,
they are pointed polyhedra. Therefore, the only relevant classes of interest for economic
applications are the classes of discrete convexity associated to pointed polyhedra. We can
also assume that the set %2( %) contains the standard basis {e,, . . ., €} of Z".Insuch a
case, #(%) is aunimodular system if and only if every |K| linear independent vectors
M.y T Of R(P) is a basis of the abelian group 7" (see, for example, Schrijver
(1987), Chapter 19). O

We thus have the following recipe to construct polyhedral classes of discrete
convexity: Take a unimodular system % and consider al the integral polytopes whose
edges are parallel to vectors of %. Denote by 2t(%,Z) such a class of polytopes.

We now give an example of the interesting and famous unimodular system.
Example 4. The set A, :={*e, € —¢, i, | EK} of vectors of Z" is a unimodular
system. Since A, contains the standard basis, we need to show that any subset of |K|
linear independent vectors of A, form a basis of Z" (see the previous Remark). Let
B CA, be a basis of R*. We check that B is a basis of Z". One of the +e, i €K,
belongs to B, otherwise B would be a subset of the hyperplane 2, _ . x, = 0, and, hence, B
could not be a basis of R". Let e, € B. If none of the vectors *(e, — e,) belongs to B,
then the set B\{e, } is contained in the subspace x, = 0, where x,, . . ., X, denotes the dual

A vector r belongs to R(%P) if and only if there is a polyhedron PE%® which has an edge of the form [x,
x+ar] or x+ R, r with some x€Z* and a€N.
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basstoe,,..., €. By induction, B\{e,} forms a basis of 7™ Hence B is a basis of
7" e —e belongs to B with some j, then, substituting e, — e, by ¢ =e, + (g — &),
we rece|ve anew basis B’. Obviously, both B and B’ are e|ther bases or are not bas& of
Z". Repeating, we can assume that none of vectors *(e, — e,) belongs to B’. Therefore,
B’ is a basis of Z*, and, hence, so is B. [

Denote by 2t(A,) the class of pointed polyhedra of R*, whose edges are parallel to
vectors of A, and denote by 4% the subclass of integer polyhedra. The class 2t(A)
coincides with the class of polyhedra, known in discrete mathematics as generalized
polymatroids (g-polymatroids). Generalized polymatroids were introduced by Frank
(1984) as a generalization of polymatroids of Edmonds (1970). This class of polyhedra,
moreover, is equivalent to the class of cores of convex cooperative games, explored by
Shapley (1971). We mention that in discrete mathematics generalized polymatroids were
defined as polyhedra given by systems of specific linear inequalities (see Frank and
Tardos, 1988; Fujishige, 1991). However, this viewpoint is not used in the sequel.

A subset of Z¥ is said to be a PM-set if it belongs to the class of discrete convexity
associated with integral g-polymatroids.

We can construct new g-polymatroids by summing up of aready known; $94%
contains segments [0, r], r € A, the sums of such segments, the simplex 4 and all its
faces, the sums of these faces. We can also construct products;, if P and Q are
g-polymatroid in R™ and R", correspondingly, then P X Q is a g-polymatroid in
R" x R™. We can use projections along a set of coordinates and, more generally,
homomorphisms of lattices of integers of special types (Danilov and Koshevoy, 1998) to
construct new g-polymatroids who will be the images of already known under such
homomorphisms.

We now describe a few classes of easily recognizable g-polymatroids given by
specific systems of mequalma Recall, that a family J of subsets of a set K is called
laminar if, for any A, B € 7, there holds either A< B, or B< A, or AN B = . Observe,
that if 7 isalaminar famny, then we can always assume that 7 contains all singletons
{k}, ke K, and the whole set K.

Example 5. Let J be the collection of singletons and a chain ¥ ={KD>C,D>C,D - - -
DC.}, m=|K|. 7 is alaminar family. O

Proposition 4. Let I be a laminar family. A polyhedron defined by the inequalities
a=x(A=h, A€,

is a generalized polymatroid. If, for every A€ 7, a,, b, € Z, the above polyhedron is
an integral g-polymatroid.

Proof. We check that the edges of a polyhedron defined by the inequalities a, =< x(A) <
b, A€ J, are parallel to vectors of Ay. For this, consider (n — 1) linearly independent
functionds 15, S€ 7, i =1,. -1 n =Kl (1) = =5 X)-
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There are two different cases: K= U7 § and K= U} S. In the first case, there
exists exactly one element outside U §, say k € K, and, then, the common kernel of 1s,
i=1...,n—1 is generated by e,. In the second case, since J is laminar and the
kernel is one-dimensional, one can show that there exists a unique ‘ nonseparable pair’ k,
| €K, i.e, there is a unique pair of elements k, | € K such that there is no set in the
collection §, i=1,..., n—1, which separates k and | (KE S, [2€ §, or vice versa).
Therefore, the kernel is proportional to e, — €.

Since the edges of the polyhedron defined by a, = x(A) <b,, A€ 7, are pardlld to
kernels of (n— 1) linearly independent functionals 13, Seg,i=1...,n—-1 and,
since these kernels are generated by vectors of A, this polyhedron is a g-polymatroid.
Similarly, one can show that if a, and b,, A€ 7, are integers, then any vertex of this
polyhedron is an integer vector. Hence it is an integral g-polymatroid (for details, see
Danilov and Koshevoy (1998), or see Frank and Tardos (1988) for an aternative
proof). Q.E.D.

Given a laminar family 7, denote by () the class of polyhedra of the form

a=xA=h, AEZ,

a,, by, A€ 7, areintegers. Obviously, the intersection of polyhedra of () remainsin
the class. The sum of polyhedra of (J) can turn out to be a polyhedron outside of
P(T), but it is, of course, dways an integral g-polymatroid.

Remark. Demand sets in Gale’'s model (see Example 2) are PM-sets. In fact, the
polytope given by inequalities x(K) =1, x*=0, k€K, is the smplex 4, =co{0, 1,,
keK}. 4; belongs to P(J), where I is the trivia laminar set consisting of the
collection of al singletons and the whole set K. All faces of 4, are defined by similar
systems of inequalities. Thus, demands, as integer points of the faces of the simplex 4,
are PM-sets. [

5.1. $6%-convex functions

A function f:Z" - RU{+ «} is said to be .#9%-convex if it fits Definition 4 for the
class of PM-sets.

Murota and Shioura (1999) considered such a class of functions and called these
functions M*-convex, see, also Murota (1996, 1998).

How does one construct .$9%-convex functions? Well, since $9% is a class of
discrete convexity, the convolution of a few .$%92-convex functions, defined on R, is
FEGP-convex.

The sum of $9%-convex functions is not $¢%-convex in general, since the class of
integral g-polymatroids fails to be closed with respect to intersections. However, we
have the following

Proposition 5. Let  be a laminar family of subsets of K. For every A€ J, let
f.:Z - RU{+ o} be a pseudoconvex function. Then the function f:Z" - R U { + o}
defined by
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f(X) = 2 (X&), XeZz*, (21)

AET

is SYGP-convex.

Proof. Recall that f*:(R*)* - R, f*(p): = sup, x«(p(X) — f(x)), is called the conjugate
function or the Legendre—Young—Fenchel transform of f.

Let f and g be closed convex functions, such that epi(f*) + epi(g*) is a closed set.
Then, it is not difficult to check (see the proof of Proposition 3) that o*(f + g)(p) =
a(f*g*)(x) holds with x € 9*(f*g*)(p), where 9f(x) = {p € (R“)*|p(y) — p() =f(y) -
f(x) Vy € R} denotes the subdifferential of f at the point x. This implies that 9*(f +
9)(p)) = 9*f(p,) N 9*g(p,) for some p, and p, such that p=p, +p,, Py, P, € (RK)*-

The effective domain of the conjugate function (f,)*, ACN, is located on the line
R(1,). Therefore, the sum of the epigraphs epi(f ) + epi(f}) is closed for any A#B.
Hence, areas of affinity of the function >, f,(X(A)) are intersections of strips of the
form a, =x(A) =h,, A€ J. These aress of affinity are polyhedra of 2(J). The latter
polyhedra are integral g-polymatroids. Hence f is an $9%-convex function. Q.E.D.

By Proposition 5 and Example 5, we have the following.

Corollary 1. Let I be the collection of singletons and elements of a chain € ={K =
C,DC,D---DC.} Letf:Z - RU{+ o}, keK,andg:Z - RU{+ o}, i=1,...,
m, be pseudoconvex functions. Then the function

f(X) :kZka(xk) +_:Elgi (chxk), X ez~ (22)

is SYGP-convex.
We now propose several examples of $9%-convex functions to illustrate Corollary 1.

Example 6. Take separable convex functions, i.e., functions of the form

) = 2 ("),
keK
where f, (k€ K) are convex functions on R. They fit (22) for I consisting only of
singletons. These functions are .#9%-convex, and Theorem 2 along with this class of
functions is precisely a multidimensional generalization of Henry’'s result (Henry,
1970). O

Example 7. Take now quasi-separable convex functions, that is functions defined as
follows,

f(X) = > £X) + (> X, X e Z¥,

where f, and f,, k € K, are convex functions on R. They also fit (22) for I consisting of
singletons and the one element chain € ={K}. O
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Theorem 2 along with this type of .$¢%-convex functions extends the existence result
in Bevia et al. (1999).

The indifference levels of the utility functions appearing in Quinzii (1984) and
Svensson (1984) aso fit (22). In fact, the essential feature of Quinzii's model is that
consumers never have use for more than one item of any of the goods. Formally, the
consumer utility function takes the form u(Z, m) = max, gy Uk, m), for any Z € {0,
1}, m>0. The associated indifference levels, such a function, are of the form
q"(Z) = Min, coppzyd" (). In the following Example 8, we show that these indifference
levels are $9P-convex, and, moreover, also fit (22). This is a rationale underlying
Quinzii’s (1984) existence result.

Example 8. Consider the function U:2“ — R of the form U(A) = mi N, AU(K), with some
function u:K — R.We show that it satisfies Corollary 1. For this, we extend U on Z* as
follows

U(X) = ml nkesupp(x)u(k)' X S ZE! (23)

where U(0) = max, u(k) by convention, and supp(X) ={k € K|Xk > 0}.

Now, rank elements of the set K in decreasing order with respect to the values of u:
ul)=...=un)=0, n=|K|. Set d,=u,, d,=uk)—uk—-1), i=2..., n. And
consider the following pseudoconcave function 6:7Z — R U { — «}, defined by

—oo, t<O;
o) =40, t=0;
1, t=1.

It is easy to see, that
UX)=d, +d, 00+ ... +X )+ - - +d6o(X). (24)

In fact, let k be amaximal element in suppX. Then, the left hand side of (24) yields u(k),
while the right hand side sumsup to d, + ... +d, = u(k). Since d, =0 (for i > 1), the
functions d;6, i =1,...,n, are pseudoconvex. Therefore, the function d, +d,0(X, +
.o+ X)) +d00X,) fits (23) for I consisting of the chain € ={{1,..., n}D>{2,...,
n}D ... D{n}}. Thus, functions of the form (23) are $4%-convex. [

Example 9. Let K be partitioned, K= U .. K, K.NK, =@ withs#s'. Foreschs€ S
pick a class of discrete convexity % in Z*s and a %.-convex function f.. Then, since the
cartesian product of classes of discrete convexity is a class of discrete convexity, the
function defined by

f(X) = 2 (X ).

SES

where X|, € Z"s is the projection of X on K, is a H?@—convex function. O
S SsES

Example 9 and Theorem 2 together ensure that an exchange economy, in which
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consumers have preferences with indifference levels of the form q"(X) =X
MM e uppx) K, q"(k), will have equilibria.

For example, the generalization of Gale's model by van der Laan et a. (1997) is a
case in which the demands are products of PM-sets. They are obtained as products of
integer points of faces of different standard unit simplexes, 1_[5 4y _. Hence, existence of
equilibrium, in this model, can be obtained as a consequence of Theorem 1 (see Example
2).
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Appendix A. Proof of Proposition 2.

DenoteW=3, _,, W,. Let Z* € Z* be such that, for any Z = Z*, the aggregate cost of
producing Z is larger than the total amount of money in the economy, i.e. C(Z) > =, o,
w, for any Z=7*, where C(Z) =min,_y _ 7 zezx ZieL G(4). Z* exists by Assump-
tion 4.

We dlightly modify the preferences of consumers. Denote by T, the amount of money
such that (O,T,)~,(W+Z*, =,., w,), hEH. Then the function g" defines the
indifference level of the preference <, which passes through the point (W + Z*, =,
w,), or, equivalently, through the point (0,T,). Define the modified preference <, by
setting its indifference levels as follows: For any m) =m =T, the indifference level of
<, passing through the point (0, m) coincides with the indifference level of <, passing
through the same point. For any m>T, set ,, to be a paralldl trandation of th, i.e,

dnX)=gp"(X) +m—T,, XeZz* (A.1)

Let €={(Z,, (W, W)ner: () e} be the modified economy. We assert that
equilibria of & and & coincide. In fact by Assumption 1, every consumer in & has a
positive amount of money, inferior to =, . w, (see (3)), a an equilibrium. Now
according to (2) and (3), a any equilibrium of &, each consumer has a vector of
indivisibles bounded by W + Z* ==, _ W, + Z*. However, for any X=W + Z* and
m=3, .,W,, the indifference levels of the preferences <, and =<, passing through (X,
m) coincide. Therefore, the sets of equilibriaof & and € coincide. Thus, we may assume
that (A.1) is adready satisfied in the initial economy &.

We prove existence of equilibrium for the convexified economy co( &).

Set Q =2, ., T, Take the price cube

Q={peR|0=p,=Q, VkEK],
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and define the price correspondence P:Q [0 Q through the following auxiliary construc-
tion:
For every heH, set

m,(p): = inf{m: g7'(X) = B,(p) — p(X), X EZ" , X =W + Z*}. (A.2)

(That is m,(p) is such that the indifference level "™ (-) ‘touches the budget set

B.(p).)
Define now the indirect utility functions

up(x) =my(p) — g (X), X € 2",

According to Assumption 3, these functions are pseudoconcave and, because of (A.1),
the functions ul are bounded by T, for any p&€ Q.
Let the aggregate utility function UP be given by the co-convolution

UP=miny , _, {hZH ap(x,) } x € R,
S

heH

and let the aggregate cost function C be given by the convolution

C(y) = mins {2 co(cl)(yl)}, yERK.
leL €
Recall that ( denotes the concavification of a function u, i = — co(—u), where co(c)
denotes the convexification of a function c.

Let y° be a solution to

max U P(W +y) — C(y).
yERﬁ

Such a solution exists, since C(y) — + « with ||y|| -  and U " isbounded by Q ==, T,,
(since each u? is bounded by T,).

Denote M = max czx U P(W +y) — C(y). Then, UP is a concave function; C is a
convex function and, for any x € R, C(x) + M =UP(W + X) holds. Therefore, there
exists a separating affine function of the form M + p’ with some linear function p’, i.e.,
we have

CX)+M=p'x)+M=UPW+x), xER.. (A.3)

For p€Q, let P(p) be the set of separating linear functionals p’ satisfying (A.3).

We claim that P(p) C Q, i.e. P:Q 0 Q. In fact, monotonicity of C and U " implies that
p'=0, and hence P(p)C (R*)*.. For any p’ €P(p), there holds UP(W +yP) —
p'(W+y")=UP(W +yP) — C(y") = 0. Therefore, we have Q =U (W + yP) =p’(W +
yP). Since W is an integral vector with positive coordinates, we have W =1, which
implies that p, < Q for all ke K.

The set P(p) is convex and compact, as the set of separating linear functionals. Since
U" is continuous with respect to p (every ul is continuous with respect to p), the
correspondence P is closed. By the Kakutani theorem, P has a fixed point, say
p* € P(p*). Let us check that p* is an equilibrium price for co( &).
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Obviously, y* <Z*. Since q™®” touches the budget set B,(p*), the following
equality is satisfied

Argmax, gk (UF () = P*(x)) = co(Dy,(P*))-

(Recall that D, (p) denotes the set of al X, € Z* such that (X,,3,(p) — p(X,)) is a best
element in the budget set B, (p) with respect to the preference <, )

We have Argmax(p*(y) — C(y)) = Z,c,. co(§(p*)), because this holds for al prices
(see (14).

Thus at price p*, because of (15) and (14) (U and C are aggregate functions, the
co-convolution and the convolution, respectively), we have

wecho(Dh(p*» —EL co(S(p*))- (A4)

And p* is an equilibrium price for the convexified economy co(%). Q.E.D.
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