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Abstract

We consider a production economy with many indivisible goods and one perfectly divisible
good. The aim of the paper is to provide some light on the reasons for which equilibrium exists for
such an economy. It turns out, that a main reason for the existence is that supplies and demands of
indivisible goods should be sets of a class of discrete convexity. The class of generalized
polymatroids provides one of the most interesting classes of discrete convexity.  2001
Published by Elsevier Science B.V.
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1. Introduction

We consider here an economy with production in which there is only one perfectly
divisible good (numeraire or money) and all other goods are indivisible. In other words,

Kthe commodity space of the model takes the following form Z 3 R, where K is a set of
types of indivisible goods.

Several models of exchange economies with indivisible goods and money have been
considered in the literature. In 1970, Henry (1970) proved the existence of a competitive
equilibrium in an exchange economy with one indivisible good and money. He also gave
an example of an economy with two indivisible goods in which no competitive
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equilibrium obtains. In 1982, Kaneko (1982) established existence of an equilibrium for
a non-transferable extension of the Shapley–Shubik model. In 1984, Quinzii (1984),
Gale (1984) and Svensson (1984) generalized his result for house markets. There has
recently been renewed interest in exchange economies with indivisibilities and money.
Van der Laan et al. (1997) consider a multi-product generalization of Gale’s setup. Bevia
et al. (1999) consider an economy with several types of indivisibles and specific
transferable utilities. Danilov et al. (1995) and Bikhchandani and Mamer (1997)
provided a necessary and sufficient condition of existence of equilibria for economies
with transferable utilities.

However, these results do not provide general existence conditions akin to those
prevailing for divisible goods economies. These are well known. These conditions boil
down to continuity and convexity. One could hope that existence of equilibria in
economies with indivisibles should be connected with an appropriate notion of convexity
in the lattices of integer points.

The aim of the paper is to provide a general existence theorem for the Arrow–Debreu
model with indivisibles and money. It turns out that the rationale for existence is that
supplies and demands of indivisible goods be discrete-convex sets. In particular, our
approach clarifies the afore-mentioned existence results.

There are two sets of conditions in the existence issue with indivisibles. The first ones
consist in ‘continuity’ assumptions. They should warrant upper semi-continuity of
demands and supplies with respect to prices and ‘proper’ behavior at the boundary of the
price space. This topological part is common to both divisible and indivisible cases. The
second set of conditions rules the shape of demands and supplies given prices. In
economies with divisible goods, demand and supply should be convex subsets of an
Euclidean space. In economies with indivisibles, demand and supply sets should belong
to some class of discrete convexity.

Let us explain the essence of the matter. Consider an exchange economy with
indivisibles and money (of course we have production in our model, but for the time

Kbeing the reader might forget about it). Let D ( p) , Z denote the ‘discrete part’ of theh
Kh-th consumer’s demand, given a price p [ Z , h [ H. Replace the ‘discrete’ demand1

sets D ( p) by their convex hulls co(D ( p)) and consider the convexified economy (withh h

divisible goods) whose demands are co(D ( p)), h [ H. Assume that the sets co(D ( p)),h h

h [ H, are ‘well-behaved’ with respect to prices. Then standard fixed-point arguments
enable to assert existence of an equilibrium price p* for the convexified economy. This
means that the total initial endowment vector o W (an integral vector) belongs to theh[H h

sum of the convexified demands o co(D ( p*)) 5 co(o D ( p*)). Generallyh[H h h[H h

speaking, this does not imply that o W belongs to the sum of the initial ‘discrete’h[H h

demands o D ( p*). Our requirement on discrete convexity of demands ensures thath[H h

this implication holds. And therefore, the price p* will be the equilibrium price in the
discrete model.

Thus, to get an equilibrium in the discrete model, we need to ensure that the following
equality holds:

Kco O (D ( p*) > Z 5O D ( p*). (*)h hS D
h[H h[H
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Of course, we should require such an identity for each individual demand, i.e.,
K KD ( p) 5 co(D ( p)) > Z . We call pseudoconvex the subsets of Z having this property.h h

But pseudoconvexity of individual demands is not enough to have (*). Indeed, the sum
1of pseudoconvex sets might, in general, fail to be a pseudoconvex set . Nevertheless,

this is not a hopeless case: there are subclasses of pseudoconvex sets, that are closed
with respect to summation.

A class $ of pseudoconvex subsets is said to be a class of discrete convexity if it is
closed with respect to sums. Thus, if the sets D ( p*), h [ H, belong to such a class $,h

(*) holds, and, hence, the discrete model has an equilibrium.
Modulo the topological part of assumptions, our existence theorem (Theorem 1) states

that equilibria in a discrete economy with money exist if the discrete parts of demands
and supplies belong to some class of discrete convexity. Therefore, the discrete
convexity of supplies and demands is, in our opinion, the true reason for the equilibrium
existence in economies with indivisibilities.

However, finding both the rationale and the proper condition is only a half of the job.
(Similar in spirit conditions appeared in Danilov et al. (1995) for a general case and in
Bikhchandani and Mamer (1997) for a case of transferable utilities.) The second half
consists in finding non-trivial interesting classes of discrete convexity. Fortunately, there
are many classes of discrete convexity. The most interesting one with respect to the
problem considered here is the class of integral generalized polymatroids (see Section 5).
We also give a few examples of utility functions generating polymatroidal demands. In
particular, in all afore-mentioned models (Henry, 1970; Kaneko, 1982; Gale, 1984;
Quinzii, 1984; Svensson, 1984; van der Laan et al., 1997; Bevia et al., 1999) which dealt
with existence of equilibria, demands turn out to be sets of the class discrete convexity
associated with integral generalized polymatroids.

Remark. The authors became aware, after submitting their paper, of an article by Gul
and Stacchetti (1999), in which some existence theorem for economies with indivisibles
presented in single units and money is proven. Demands and supplies in this model also
turn out to be sets belonging to the class of discrete convexity associated with integral
generalized polymatroids. We will return to this question in another paper.

2. Model and definitions

We consider a production economy with a finite number of consumers and producers,
a finite number of indivisible goods, and one perfectly divisible good. Indivisible
commodities form only a part of the whole economy, the other part is represented by
means of a perfectly divisible aggregate good, called money. We denote by K the set of

Kindivisible goods. The commodity space of the model takes the form Z 3 R.
There is a finite set L of producers. A producer l [ L is described by its cost function

Kc :Z → R < h 1 `j, c (0) 5 0, c is a monotone function. This means that producers usel 1 l l

1Emmerson (1972) mistakenly assumed that the (*) always holds.
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only this aggregate divisible good as productive input. The producer l produces a vector
Kof discrete goods Z [ Z at the cost of using c (Z) of money. If c (Z) 5 1 `, then1 l l

producer l cannot produce Z.
There is a finite set H of consumers. Consumer h [ H has a preference A onh

K
Z 3 R , which is a complete, closed, and transitive binary relation. We assume that1 1

preferences are increasing in indivisibles and strictly increasing in money. Each
Kconsumer h [ H is endowed with a vector of initial endowment (W , w ) [ Z 3 Rh h 1 1

and shares in the firms u $ 0, l [ L, (o u 5 1 for any l [ L).lh h[H lh

Thus, a discrete economy % is a collection

% 5 h(A , (W , w ), (u ), l [ L), h [ H; (c ), l [ Lj.h h h lh l

Markets and production are assumed to be perfectly competitive. We normalize prices in
such a way that the price of money equals 1; and we define prices of indivisible goods as

K Ka positive linear functional on Z , or, simply, a nonnegative vector p [ R , p(X) 51
k k ko p X , where p 5 ( p ) , p [ R , X 5 (X ) , X [ Z.k[K k k k[K k 1 k[K

Given a price p, each producer l [ L maximizes the following program:

max ( p(Y) 2 c (Y)). (1)l
KY[Z1

Denote p ( p) 5 max( p(Y) 2 c (Y)).l l

Each consumer h [ H seeks a best element (X , m ) with respect to the preference Ah h h

in the budget set

KB ( p) 5 h(X, m) [ Z 3 R u p(X) 1 m # b ( p)j,h 1 1 h

where the income, b ( p), is defined byh

b ( p) 5 p(W ) 1 w 1O u p ( p).h h h lh l
l[L

Definition 1. A tuple ((X , m ) ; (Y ) ; p) is a competitive equilibrium in theh h h[H l l[L

economy % if

(a) Y is a solution to (1), l [ L,l

(b) for each h [ H, (X , m ) is a best element in the budget set B ( p) with respect toh h h

the preference A ,h

(c) all markets clear:

O X 5O W 1O Y , (2)h h l
h[H h[H l[L

O m 1O c (Y ) 5O w . (3)h l l h
h[H l[L h[H

As preferences are strictly increasing with respect to money, the clearing of the
indivisible goods markets implies that of the money market.
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3. Discrete convexity and the existence issue

Here we present a general existence theorem for production economies with
indivisibles and money. In order to emphasize the discrete aspect of the existence, i.e., a
‘proper’ notion of convexity in the lattices of integral vectors, we state it in a conditional
form, omitting topological issues.

Given a price p, denote by

S ( p) 5 Argmax ( p(Y) 2 c (Y))Kl Y[Z l1

the supply of the producer l [ L. Each consumer h chooses a best element (X ,h

m ) [ B ( p) with respect to the preference A . Monotonicity of preferences impliesh h h
Kp(X ) 1 m 5 b ( p). Denote by D ( p) the set of all X [ Z such that (X , b ( p) 2h h h h h 1 h h

p(X )) is a best element in the budget set B ( p) with respect to the preference A . Anh h h

equilibrium exists whenever we find a price p* such that the following inclusion

O W [O D ( p*) 2O S ( p*) (4)h h l
h[H h[H l[L

holds, where the sum of sets is defined as the Minkowski sum, A6B 5 ha6b u a [
A, b [ Bj.

Suppose the discrete economy % has been convexified. That is we have a new
Keconomy co(% ) with divisible goods (whose commodity space is R 3 R) in which

individual demands and supplies are the convex hulls of demands and supplies of the
initial economy %.

Namely, in the convexified economy, for a price p, the demand of the h-th consumer
is the set h(x, b ( p) 2 p(x)), x [ co(D ( p))j, where co( ? ) denotes the convex hull of ah h

set. The supplies of co(% ) are given by co(S ( p)), l [ L. The profits of the producers inl

co(% ) are equal to their profits in %.
2Assume now we have an equilibrium of the economy co(%) , i.e., there exists a price

p* such that

O W [O co(D ( p*)) 2O co(S ( p*)). (5)h h l
h[H h[H l[L

When (5) implies (4), p* is also an equilibrium price for the discrete economy %. But,
this implication does not hold for arbitrary discrete sets, and, thus, equilibria might fail
to exist. We can see this in the following simple example.

Example 1. There are two agents and two types of goods, H 5 K 5 h1, 2j. The utilities
1 2 1 2 1 2 1of agent are u ((X , X ), m) 5 2min(X , X ) 1 m, u ((X , X ), m) 5 min(2X 11 2

22X , 2) 1 m. Since these utilities are quasi-linear in money, we do not specify the
individual initial endowments and define only the aggregate endowment V 5 (1, 1) of
indivisible goods. In the convexified economy, there exists a unique equilibrium price

2There are many results of existence of equilibria in economies with divisible goods, see, for example Arrow
and Hahn (1971); McKenzie (1987); we also establish an existence result in the next section.
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p* 5 (1, 1). At the price p*, the agents’ demands are respectively co(h(1, 0), (0, 1)j) and
co(h(0, 0), (1, 1)j), and x 5 (1 /2, 1 /2), x 5 (1 /2, 1 /2) are the equilibrium allocations.1 2

But this price p* is not an equilibrium price of the initial discrete economy. In fact, at
the price p* 5 (1, 1), the demands of agents are D ( p*) 5 h(1, 0), (0, 1)j and1

D ( p*) 5 h(0, 0), (1, 1)j, respectively. The initial endowment (1, 1) belongs to the sum2

of convexified demands co(h(1, 0), (0, 1)j) 1 co(h(0, 0), (1, 1)j), but does not belong to
the sum of their discrete counterparts, h(1, 0), (0, 1)j 1 h(0, 0), (1, 1)j 5 h(0, 1), (1, 0),
(1, 2), (2, 1)j. For those sets, (5) does not imply (4). h

We introduce now our main notion.

KDefinition 2. A set $ of subsets of Z which satisfies the following axioms DC1 and
DC2 is said to be a class of discrete convexity.

DC1. For any A [ $, there holds

KA 5 (co(A)) > Z .

DC2. For any A and B [ $, we have A6B [ $.

Given a class $ of discrete convexity, suppose D ( p*), h [ H, and S ( p*), l [ L, areh l

sets of $. Then, the implication (5)⇒(4) holds. In fact, because of DC2, the set
KA 5 o D ( p*) 2 o S ( p*) belongs to the class $. Since o W [ Z and oh[H h l[L l h[H h 1 h[H

W [ coA 5 o coD ( p*) 2 o coS ( p*), we conclude that DC1 implies oh h[H h l[L l h[H

W [ A.h

Thus, we obtain the following conditional theorem.

Theorem 1. Let % be a discrete economy. Assume (1) there exists an equilibrium price
p* for the convexified economy co(% ); (2) there exists a class $ of discrete convex sets
such that, at the price p*, the demands D ( p*), h [ H, and supplies S ( p*), l [ L,h l

belong to $. Then p* is an equilibrium price for %.

Discrete convexity of demands and supplies is the main condition, which needs to be
added to topological conditions, to ensure existence of equilibrium for discrete economy
with money. We do not state that this condition is a necessary condition in a formal
sense; it could occur that an equilibrium exists without discrete convexity. However, just
as convexity is a ‘necessary’ condition for economies with divisible goods, the discrete
convexity is a ‘necessary’ condition for economies with indivisibles and money. We can
also say that our existence result does not rest upon any specifics of initial endowments
and upon the number of agents.

In Section 4, we provide some topological conditions, ensuring that condition 1 of
Theorem 1 is satisfied, and in Section 5, we consider an interesting class of discrete
convexity associated with integral g-polymatroids.

Let us display the power of Theorem 1 in the following example. In this example we
highlight the reason underlying the existence of equilibrium in Gale’s model (Gale,
1984).
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Example 2. Gale considers an exchange economy in which each trader owns one
indivisible object (one may think of these objects as houses). Therefore, we can identify
the set K of objects with the set of traders H. In other words, the initial endowments

KW 5 1 , h [ H, where, for S 7 K, 1 denotes the vector in R with coordinatesh h S

(1 ) 5 1, if k [ S and 0 otherwise, k [ K.S k

The trader’s preferences are such that no trader desires more than one object. Gale
does not introduce explicitly trader’s preferences in his model, instead he specifies
trader’s demand at each price.

HGiven a price p [ R , the demand of the trader h, D ( p), is a subset of h0j < h1 ,1 h h

h [ Hj (this holds because traders desire no more than one object). From the Gale’s
assumptions it follows that the demand correspondences p → D ( p) are upper semicon-h

tinuous and have ‘regular’ behavior with respect to the boundary values of prices. In
other words, the assumptions are ‘topological’ indeed. They warrant existence of an

Hequilibrium in the convexification of his exchange economy, i.e., there exist p* [ R1

and x [ co(D ( p*)), h [ H, such thath h

O x 5 1 . (6)h H
h[H

The equality (6) breaks down to the following list of equalities

O x 5 1 for any h9 [ H, (7)hh9
h[H

where x denotes the h9-th coordinate of x . Moreover, every x being a convexhh9 h h

combination of vectors of the set h0j < h1 , h9 [ Hj, satisfies the inequalityh9

O x # 1, h [ H. (8)hh9
h9[H

By (7), all inequalities (8) are tight. Hence, the matrix (x ) is doubly stochastic. Byhh9

Birkhoff’s theorem, there exists a permutation p :H → H with x . 0, h [ H. Thishp (h)

means that 1 [ D ( p*). Therefore, the bundle ( p*, (X 5 1 ) ) is an equilibriump (h) h h p (h) h[H

of the discrete economy.
In the development above, there is a clear split between topologically based and

discretely based arguments. The use of a fixed-point theorem is the topological
argument; and the use of the Birkhoff theorem is the discrete one. Of course, the calling
for the Birkhoff theorem is based on a particular feature of the agents’ demands in his
models: consumers need no more than one item, i.e., demands are subsets of h0j < K.

In our set-up, the topological part remains unchanged. But the discrete part, i.e. the
going from ‘divisible’ equilibrium allocation to an indivisible allocation, differs.
Namely, we pointed out that the sets D ( p) consist of integer points of some faces of theh

simplex D 5 co(0, 1 , . . . , 1 ). The faces of D are the simplest integral g-polymatroids,1 uH u

and, as we will see later on in Section 5, the class of integral g-polymatroids is a class of
discrete convexity. Therefore, the demands in Gale’s model are discrete-convex sets, and
this is the ‘discrete’ reason underlying the existence of equilibrium here. h
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4. Existence of equilibria in the convexified economy

Here we describe a convexification procedure for a discrete economy and provide
conditions which warrant existence of equilibria in the associated convexified economy.

4.1. Convexification

Suppose % is a discrete economy, as in Section 2. We shall convexify % by
convexifying its cost functions and preferences.

K KLet f :Z → R < h 1 `j be a function. Denote by epi( f ): 5 h(x, t) [ Z 3 R u t $ f(x)j
Kthe epigraph of f. The convexification of f is a function co( f ):R → R < h 1 `j, whose

]epigraph is the closure of epi( f ), that is epi(co( f )) 5co(epi( f )). Equivalently, we might
Kdefine co( f ) as the supremum of affine functions h:R → R such that h(X) # f(X), for

Kevery X [ Z . We implicitly assume here that such affine functions exist. Clearly, co( f )
is a closed convex function, i.e., its epigraph is a closed convex set.

KDefinition 3. A function f :Z → R < h 1 `j is said to be pseudoconvex if a) co(epi( f )) is
K Ka closed subset of R 3 R, and b) for every X [ Z , there holds f(X) 5 co( f )(X). A

Kfunction f :Z → R < h 2 `j is said to be pseudoconcave if 2 f is pseudoconvex.

KIt follows from a) that, for any x [ R , there exist points X , X , . . . ,X , uKu 5 n, in0 1 n
K n

Z and weights a ,a , . . . ,a (a $ 0, o a 5 1) such that co( f )(x) 5 o a f(X ).0 1 n i i50 i i i i

The convexification of the cost functions is straightforward from the definition. To
define a convexification of preferences, we need to make some assumptions.

KAssumption 1. For any agent h [ H and for every bundle Y [ Z there holds1

(W , w ) s (Y, 0). hh h h

This assumption is akin to ‘abundance of money’, and, in particular, it states that each
consumer has a positive endowment of money. Assumption 1 is rather strong; it could be
weakened, however not disposed of.

Remark. Since equilibrium allocations are individually rational allocations, the shape of
Kthe h-th agent preference on the set h(X, m) [ Z 3 R u(X, m) a (W , w )j is irrelevant.1 1 h h h

Assumption 2. For any agent h [ H and any (X, m) with m $ 0, there exists a certain
amount of money m9 [ R such that1

(0, m9)K (X, m). hh

This assumption means that money can substitute any quantity of indivisible goods, and,
in particular, implies that any bundle (X, m) possesses a money equivalent. In fact, if
t (X, m) denotes the infimum over all m9 with (0, m9)K (X, m), then, it is easy to seeh h

0that, (0, t (X, m)) | (X,m). Denote by m the money equivalent of the initial endowmenth h h
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0 K(W , w ). According to Assumption 1, for any m $ m and X [ Z , there exists a uniqueh h h 1
m m mnumber q (X) $ 0 such that (0, m) | (X, q (X)). The graph of q (X) is the ‘indifferenceh h h h

curve’ of A passing through the point (0, m). Thus, we can represent a preference Ah

(satisfying Assumption 2) together with the money equivalent of a vector of initial
m Kendowments by the family of functions q on Z , m $ m .1 0

mLemma 1. This family of functions q (X), m $ m , has the following properties: (1)0
m m mq (0) 5 m, (2) q (X) is decreasing in X, (3) q (X) is (strictly) increasing in m, (4)
m mq (X) → 1 ` with m → 1 `, 5) q (X) is continuous in m. Conversely, a family of

mfunctions q (X) with properties (1)–(5) defines a preference A which is continuous,
increasing in X, strictly increasing in money, and which satisfies Assumption 2. h

m KProposition 1. Suppose that functions q :Z → R (m $ m ) have the properties (1)–(5)1 0
m Kand are pseudoconvex. Then the functions co(q ):R → R also satisfy properties1

(1)–(5).

Proof. Properties (1)–(4) are almost obvious. Let us prove the property (5). Let m $ m0

and let m9 be sufficiently close to m. Consider, to begin with, the case m9 $ m. Let
K m mx [ R and let X and a (i 5 0, . . . , n) be such that co(q )(x) 5 o a q (X ). Since, for1 i i i i i

m9 mall i, there exists e such that co(q )(X ) # co(q )(X ) 1 e, we havei i

m9 m9 mco(q )(x) #O a co(q )(X ) #Oa co(q )(X ) 1 e.i i i i
i i

K 9 9Consider, now, the case m9 # m with m9 tending to m. Let x [ R and let X and a be1 i i

9 9(i 5 0, . . . , n) the corresponding points and weights for m9 such that x 5 o a X andi i i

m9 m99 9co(q )(x) 5O a co(q )(X ).i i
i

9We can suppose that each sequence a converges to some (limit) weight a . Let a , . . . ,i i 0

a be positive and a , . . . , a be equal to 0. Then we can suppose that sequencess s11 n

9 9X , . . . , X also converge (and stabilize) to some (finite) points X , . . . , X . In fact, if,0 s 0 s

9 9 9say, X is unbounded, then o a X moves away from the point x, but this cannot0 i i i

happen. Now,

m m9 m m9 m m99 9 9 9 9 9 9co(q )(x) 2 co(q )(x) #O a q (X ) 2O a q (X ) 5O a (q (X ) 2 q (X ))i i i i i i i
i i i
s n

m m9 m m99 9 9 9 9 95O a (q (X ) 2 q (X )) 1 O a (q (X ) 2 q (X )).i i i i i i
i50 i5s11

When m9 is sufficiently close to m, the first term is small because it is equal to
s m m99 9 9o a (q (X ) 2 q (X )). The second term is also small, since a , . . . , a are smalli50 i i i s11 n

m m9 m m9 m99 9 9 9and q (X ) 2 q (X ) are bounded (because q (X ) # q (0) and q (X ) $ 0). Q.E.D.i i i i

m hAssumption 3. The functions q (h [ H, m $ m ) and the cost functions c (l [ L) areh 0 l

pseudoconvex functions. h
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mBy Lemma 1 and, for each h, the families of functions co(q ) determine a preferenceh
Kon R 3 R , which we call the convexification of A , and denote by co(A ).1 1 h h

Thus, we have a convexified produced economy co(% ), whose commodity space is
K

R 3 R, whose initial endowments are (W , w ), h [ H, whose shares in the firms areh h

u , l [ L, h [ H, whose preferences are co(A ), h [ H, and whose cost functions arelh h

co(c ), l [ L.l
KWe assert that, for any price p [ R , there holds1

Š ( p) 5 co(S ( p)), l [ L, (9)l l

Ď ( p) 5 co(D ( p)), h [ H, (10)h h

Kˇ ˇwhere S ( p) 5 Argmax p( y) 2 co(c )( y), l [ L, D ( p) is the set of all x [ R suchKl y[R l h 11 ] Kthat (x, b ( p) 2 p(x)) is a best element in the budget set B ( p) 5 h(x9, m) [ R 3h h 1

R u p(x9) 1 m # b ( p)j with respect to the preference co(A ), h [ H.1 h h

Let us prove Eqs. (9) (the equalities (10) are proven similarly). The inclusion , is
ˇtrivial. Let now x [ S( p), that is

p(x) 2 co(c)(x) $ p( y) 2 co(c)( y)

Kfor any y [ R . Let x 5 o a X be the convex representation such that co(c)(x) 5 o1 i i i i

a c(X ). Then, for each i,i i

p(x) 2 co(c)(x) $ p(X ) 2 co(c)(X ) 5 p(X ) 2 c(X ). (11)i i i i

Multiplying (11) by a and summing up, we havei

p(x) 2 co(c)(x) $O a ( p(X ) 2 c(X )) 5 p(x) 2 c(x).i i i
i

We see from this that p(x) 2 co(c)(x) 5 p(X ) 2 c(X ) if a ± 0. Thereforei i i

p(X ) 2 c(X ) $ p(Y) 2 c(Y)i i

Kfor every i and Y [ Z , that is X [ S( p) and x [ co(S( p)).1 i

Thus, the economy co(% ) is the convexification of % in the sense of Section 3. We
need the last assumption in order to ensure existence of equilibria in the convexified
economy co(% ).

Assumption 4. The total endowment of discrete goods is strictly positive: o W . 0.h[H h

The cost functions have the following property: c (Y) → 1 ` with uuYuu → 1 `, l [l

L. h

The second part of Assumption 4 is the ‘no-free-lunch’ condition. It holds, for
example, if c (Y) . 0 for Y ± 0.l

Proposition 2. Let % be a discrete economy and let Assumptions 1–4 hold. Then a
competitive equilibrium exists in the convexified economy co(% ).
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For a proof see Appendix A.
To combine this proposition with the conditional Theorem 1, we strengthen

Assumption 3. Since we do not know which price would be an equilibrium price in the
convexified economy, we need to assume supplies and demands be sets of some class of
discrete convexity $ for any price.

KDefinition 4. Let $ be a class of discrete convexity in Z . A pseudoconvex function
K Kf :Z → R < h 1 `j is said to be $-convex if for any linear functional p [ (R )* holds

Argmax ( p(X) 2 f(X)) [ $.
KX[Z

mAssumption 39. There exists a class $ of discrete convexity such that the functions q ,h

m [ R , h [ H, and the cost functions c , l [ L, are $-convex functions. h1 l

Thus, we have the following existence theorem.

Theorem 2. Let % be a discrete economy and let Assumptions 1, 2, 39 and 4 hold. Then
a competitive equilibrium exists in %.

4.1.1. The case of transferable utilities
The special case of economies with transferable utility is interesting because the

existence of equilibrium can be obtained as a solution to an auxiliary optimization
problem. Moreover, we use this optimization problem in our proof of Proposition 2.

KRecall, that a preference A on R 3 R is said to be transferable (quasi-linear in1

money) if it can be represented by a utility function of the form U(X, m) 5 u(X) 1 m
Kwith some function u: R → R.1

ˆLet % be an economy with divisible goods and transferable utilities; consumers’
K Kutility functions are u :R → R, h [ H, and producers’ cost functions are c : R → R <h 1 l 1

h 1 `j, l [ L.
Assume that functions u (h [ H ) are closed concave, and that functions c (l [ L) areh l

closed convex.
Given a price p, the demand D ( p) of the h-th consumer is defined as the set ofh

solutions to the problem

max (u (x) 2 p(x)). (12)h
Kx[R1

The supply S ( p) of the l-th producer is the set of solutions tol

max ( p(x) 2 c (x)). (13)l
Kx[R1

ˆA tuple ((x ) , ( y ) , p) is said to be an equilibrium of the economy % 5 h(u ,h h[H l l[L h

W ), h [ H, c , l [ Lj with transferable utilities if, for every h [ H, x [ D ( p), for everyh l h h

l [ L, y [ S ( p) and the equality o x 5 o W 1 o y holds.l l h[H h h[H h l[L l

We remind that equilibria in economies with transferable utilities can be obtained with
the help of solutions to an optimization task. In fact, consider the following aggregate
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utility and aggregate cost functions. The aggregate utility function U is given by the
co-convolution

KU(x) 5 sup O u (x ) , x [ R .h h 1H J
K h[HO x 5x, x [Rh h 1

h[H

The aggregate cost function C is given by the convolution

KC( y) 5 inf Oc ( y ) , y [ R .KO y 5y, y [R l l 1H Jl l 1
l[Ll[L

Proposition 3. The aggregate functions C and U have the following properties:

S( p) 5O(S ( p)), (14)l
l[L

and

D( p) 5O (D ( p)), (15)h
h[H

where S( p) denotes Argmax( p( y) 2 C( y)), D( p) denotes Argmax(U(x) 2 p(x)), S ( p): 5l

Argmax( p( y) 2 c ( y)), and D ( p): 5 Argmax(u (x) 2 p(x)).l h h

Proof. Let us prove (14); (15) is proven similarly. By definition of the convolution, the
epigraph of C is equal to the closure of the sum of the epigraphs of c . Since c $ 0, itsl l

Kepigraph is a subset of the positive orthant R 3 R . Since the sum of closed convex1 1
Ksubsets of R 3 R is closed (see, for example, Rockafellar (1970)), we have1 1

epi(C) 5O epi(c ). (16)l
l

(14) is now obtained from (16) by means of well-known properties of the summation
operation. Q.E.D.

ˆAn equilibrium of the economy % exists if and only if there exists a solution to the
task

max U(W 1 y) 2 C( y), (17)
Ky[R1

where W 5 o W . Indeed, since equilibria are Pareto optimal, any equilibriumh[H h

allocation gives a solution to (17). Conversely, let y* be a solution to (17). Then we
have

C( y) 2 C( y*) $ U(W 1 y) 2 U(W 1 y*)
Kfor any y [ R . On the left hand side, the function is concave; on the right hand side,1

the function is convex. Therefore there exists a separating linear functional, and we can
take any such functional to figure an equilibrium price. By (14) and (15), we can
disaggregate both the vector W 1 y* into optimal consumers’s solutions and the vector
y* into optimal producers’ solutions. h

When, for example, the individual utility functions are bounded and C( y) → 1 ` with
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uuyuu → 1 `, a solution to (17) exists. In such a case, the concave function U(W 1 y) 2

C( y) goes to 2 ` with uuyuu → 1 `. Existence of a solution is also warranted, when the
3cost functions have bounded effective domains . Note that if we set c(0) 5 0 and

c(Y) 5 1 ` for Y ± 0, this yields precisely a pure exchange economy.
Now, we consider utility functions of the form U(X, m) 5 u(X) 1 m with some

Kfunction u:Z → R, u(0) 5 0. In a discrete economy with transferable utilities, just as in1

the divisible case, the demand of the consumer h, at a price p, is defined as the set of
solutions to the problem

max (u (X) 2 p(X)). (18)KX[Z h1

tuA tuple ((X ) , (Y ) , p) is said to be an equilibrium of an economy % 5h h[H l l[L

h(u ,W ), h [ H, c , l [ Lj with transferable utilities if, for every h [ H, X is a solutionh h l h

to (18), and if, for every l [ L, Y is a solution to (1) and the balance (2) holds.l
tuAn equilibrium of the convexified economy co(% ) exists if utility functions are

pseudoconcave, and if cost functions are pseudoconvex, and if (17) has a solution for
their convexified counterparts.

Thus, by our conditional Theorem 1, we have the following existence theorem for
discrete economies with transferable utilities.

tuTheorem 3. Let % be a discrete economy with transferable utilities. Suppose, for some
class $ of discrete convexity, that the utility functions u (h [ H ) are $-concave andh

the cost functions c (l [ L) are $-convex with bounded effective domains. Then therel
tuexists an equilibrium in % .

Remark. Theorem 3 states existence of equilibrium in terms of individual utility
functions and cost functions. Since the disaggregation of a solution to (17) yields an
equilibrium in models with transferable utilities, a necessary and sufficient condition of

tuexistence equilibrium for % can be formulated in aggregate terms (see, for example,
Danilov et al. (1995) or Bikhchandani and Mamer (1997)). An equilibrium for the

tueconomy % exists if and only if there exists a Pareto optimal allocation of indivisible
tugoods in the economy % , which would be Pareto optimal in the convexified economy

tuco(% ). However, this necessary and sufficient condition is of little interest, because of
its aggregate formulation. h

Here, we have established existence of equilibrium for a discrete economy modulo a
hypothetical class $ of discrete-convex sets. However, our results would have no big
value, if we could not provide interesting examples of such classes. In the next section,
we show that there exists an interesting class of discrete convexity, namely, the class
associated with integral generalized polymatroids. We also show that in all known
models of exchange economies with indivisibilities and money, in which equilibria exist,
the demand sets belong to such a class.

3The effective domain of a function is the subset of the domain of definition where the function does not equal
1 `.
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5. Discrete-convex sets and functions

Here we demonstrate how to construct some interesting classes of discrete convexity.
We will construct them as integer points of integral polyhedra. A polyhedron is the

Kintersection of a finite number of closed halfspaces. A polyhedron P , R is said to be
Kan integral polyhedron if P 5 co(P(Z)), where P(Z): 5 P > Z .

Assume a class 3 of polyhedra with the following properties
DCP1. Any polyhedron P [ 3 is integral.
DCP2. For any polyhedra P, Q [ 3, we have P6Q [ 3 and

(P6Q)(Z) 5 P(Z)6Q(Z). (19)

A class of polyhedra 3 satisfying properties DCP1 and DCP2 is said to be a polyhedral
class of discrete convexity. Given a class 3 of discrete convex polyhedra, the class

K$(3 ) of subsets of Z , $(3 ) 5 hP(Z), P [ 3 j satisfies DC1 and DC2, that is a class
of discrete convexity. We say that the class $(3 ) is associated with the polyhedral class
3.

We may always assume that a polyhedral class of discrete convexity 3 contains all
singleton sets of integer points. For such a class 3 of polyhedra, (22) is equivalent to
the following property, which is more convenient to check out,

P > Q contains an integer point if non empty. (20)

KIt is easy to see that (20)⇔(19): Let X [ Z be some integer point of P 2 Q, that is
X 5 p 2 q, p [ P, q [ Q. Then the intersection of P and Q 1 X is non-empty and,
because of (20), P > (Q 1 X) is an integral polyhedron. Therefore, we can choose p and

Kq in Z , hence, the implication (20)⇒(19) is shown. In the other direction: if
P > Q ± 5, then 0 [ P 2 Q. According to (19), 0 is obtained as the difference of two
integer points of P and Q, i.e. P > Q contains an integer point.

In dimension one, the class of all integral polyhedra (which are segments with integral
endpoints) is the polyhedral class of discrete convexity. This is, of course, not the case in
higher dimensions (see, for example, Example 2). In higher dimensions, to get a class of
discrete convexity, we need to narrow the class of pseudo-convex sets.

2Example 3. Hexagons. Consider a class * of polyhedra in R , which consists of
polyhedra defined by the inequalities a # x # b , a # x # b , c # x 1 x # d, where1 1 1 2 2 2 1 2

a , a , b , b , c and d are integers. It is easy to check that such hexagons (generally1 2 1 2

speaking they can degenerate to polyhedra with smaller number of edges) has integral
vertices. Since the intersection of hexagons of * is a hexagon of *, by (20), we
conclude that * is a class of discrete convexity. h

Observe, that the edges of those hexagons are parallel to either e , e or e 2 e1 2 1 2
2(where we denote by e and e the standard basis of Z ). These vectors have the1 2

following property: if we take any two of them, then this pair will form a basis of the
2 2lattice Z . As one can see from Example 1, if a class of integral polyhedra of R

contains polyhedra, whose edges are parallel either e 2 e or e 1 e , then it cannot be1 2 1 2
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a class of discrete convexity. In fact, the pair of vectors e 2 e and e 1 e does not1 2 1 2
2form a basis of Z : for example, a point of the form (2n 1 1)e , n [ Z, will never be1

obtained as a linear combination of the vectors e 2 e and e 1 e with integer1 2 1 2

coefficients.
Moreover, the property that ‘for a given collection of integral polytopes, any linear

independent subset of uKu primitive vectors, which are parallel to edges of these
Kpolytopes form a basis of the abelian group Z ’ is crucial for the collection to be a

polyhedral class of discrete convexity.
KLet us introduce the following notion: A collection 5 of vectors of R is said to be a

unimodular system if, for any subset R , 5, the abelian group Z(R) 5 ho a r u r [i i i i
KR, a [ Zj coincides with the abelian subgroup R(R) > Z , R(R) 5 ho a r u r [ R, a [i i i i i i

Rj. We now give a precise statement (for proof see Danilov and Koshevoy, 1998).

KTheorem 4. Let 3 be a collection of integral pointed polyhedra of R closed under
Ktaking faces. Let 5(3 ) denote the set of primitive vectors in Z , which are parallel to

4edges of polyhedra of 3 . Then 3 is a class of discrete convexity if and only if 5(3 ) is
a unimodular system.

Recall that a polyhedron is said to be pointed if it has at least one vertex. Of course, a
polytope is a pointed polyhedron.

KRemark. Since, in our model, convex hulls of demands and supplies are subsets of R ,1

they are pointed polyhedra. Therefore, the only relevant classes of interest for economic
applications are the classes of discrete convexity associated to pointed polyhedra. We can

Kalso assume that the set 5(3 ) contains the standard basis he , . . . , e j of Z . In such a1 uK u

case, 5(3 ) is a unimodular system if and only if every uKu linear independent vectors
Kr , . . . , r of 5(3) is a basis of the abelian group Z (see, for example, Schrijver1 uK u

(1987), Chapter 19). h

We thus have the following recipe to construct polyhedral classes of discrete
convexity: Take a unimodular system 5 and consider all the integral polytopes whose
edges are parallel to vectors of 5. Denote by 3t(5,Z) such a class of polytopes.

We now give an example of the interesting and famous unimodular system.

KExample 4. The set A : 5 h6e , e 2 e , i, j [ Kj of vectors of Z is a unimodularK i i j

system. Since A contains the standard basis, we need to show that any subset of uKuK
Klinear independent vectors of A form a basis of Z (see the previous Remark). LetK

K KB , A be a basis of R . We check that B is a basis of Z . One of the 6e , i [ K,K i

belongs to B, otherwise B would be a subset of the hyperplane o x 5 0, and, hence, Bi[K i
Kcould not be a basis of R . Let e [ B. If none of the vectors 6(e 2 e ) belongs to B,1 i 1

then the set B\he j is contained in the subspace x 5 0, where x , . . . , x denotes the dual1 1 1 n

4A vector r belongs to 5(3) if and only if there is a polyhedron P[3 which has an edge of the form [x,
Kx1ar] or x1R r with some x[Z and a[N.1
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K \h1jbasis to e , . . . , e . By induction, B\he j forms a basis of Z . Hence B is a basis of1 uK u 1
K

Z . If e 2 e belongs to B with some j, then, substituting e 2 e by e 5 e 1 (e 2 e ),j 1 j 1 j 1 j 1

we receive a new basis B9. Obviously, both B and B9 are either bases or are not bases of
K

Z . Repeating, we can assume that none of vectors 6(e 2 e ) belongs to B9. Therefore,i 1
KB9 is a basis of Z , and, hence, so is B. h

KDenote by 3t(A ) the class of pointed polyhedra of R , whose edges are parallel toK

vectors of A , and denote by (&3 the subclass of integer polyhedra. The class 3t(A )K K

coincides with the class of polyhedra, known in discrete mathematics as generalized
polymatroids (g-polymatroids). Generalized polymatroids were introduced by Frank
(1984) as a generalization of polymatroids of Edmonds (1970). This class of polyhedra,
moreover, is equivalent to the class of cores of convex cooperative games, explored by
Shapley (1971). We mention that in discrete mathematics generalized polymatroids were
defined as polyhedra given by systems of specific linear inequalities (see Frank and
Tardos, 1988; Fujishige, 1991). However, this viewpoint is not used in the sequel.

KA subset of Z is said to be a PM-set if it belongs to the class of discrete convexity
associated with integral g-polymatroids.

We can construct new g-polymatroids by summing up of already known; (&3
contains segments [0, r], r [ A , the sums of such segments, the simplex D and all itsK

faces, the sums of these faces. We can also construct products; if P and Q are
N Mg-polymatroid in R and R , correspondingly, then P 3 Q is a g-polymatroid in

N M
R 3 R . We can use projections along a set of coordinates and, more generally,
homomorphisms of lattices of integers of special types (Danilov and Koshevoy, 1998) to
construct new g-polymatroids who will be the images of already known under such
homomorphisms.

We now describe a few classes of easily recognizable g-polymatroids given by
specific systems of inequalities. Recall, that a family 7 of subsets of a set K is called
laminar if, for any A, B [ 7, there holds either A 7 B, or B 7 A, or A > B 5 5. Observe,
that if 7 is a laminar family, then we can always assume that 7 contains all singletons
hkj, k [ K, and the whole set K.

Example 5. Let 7 be the collection of singletons and a chain # 5 hK . C . C . ? ? ?1 2

. C j, m # uKu. 7 is a laminar family. hm

Proposition 4. Let 7 be a laminar family. A polyhedron defined by the inequalities

a # x(A) # b , A [ 7,A A

is a generalized polymatroid. If, for every A [ 7, a , b [ Z, the above polyhedron isA A

an integral g-polymatroid.

Proof. We check that the edges of a polyhedron defined by the inequalities a # x(A) #A

b , A [ 7, are parallel to vectors of A . For this, consider (n 2 1) linearly independentA K
ifunctionals 1 , S [ 7, i 5 1, . . . , n 2 1, n: 5 uKu (1 (x) 5 o x ).S i S l[Si i i
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n21 n21There are two different cases: K ± < S and K 5 < S . In the first case, therei51 i i51 i

exists exactly one element outside < S , say k [ K, and, then, the common kernel of 1 ,i Si

i 5 1, . . . , n 2 1, is generated by e . In the second case, since 7 is laminar and thek

kernel is one-dimensional, one can show that there exists a unique ‘nonseparable pair’ k,
l [ K, i.e., there is a unique pair of elements k, l [ K such that there is no set in the
collection S , i 5 1, . . . , n 2 1, which separates k and l (k [ S , l2 [ S , or vice versa).i i i

Therefore, the kernel is proportional to e 2 e .k l

Since the edges of the polyhedron defined by a # x(A) # b , A [ 7, are parallel toA A

kernels of (n 2 1) linearly independent functionals 1 , S [ 7, i 5 1, . . . , n 2 1, and,S ii

since these kernels are generated by vectors of A , this polyhedron is a g-polymatroid.K

Similarly, one can show that if a and b , A [ 7, are integers, then any vertex of thisA A

polyhedron is an integer vector. Hence it is an integral g-polymatroid (for details, see
Danilov and Koshevoy (1998), or see Frank and Tardos (1988) for an alternative
proof). Q.E.D.

Given a laminar family 7, denote by 3(7 ) the class of polyhedra of the form

a # x(A) # b , A [ 7,A A

a , b , A [ 7, are integers. Obviously, the intersection of polyhedra of 3(7 ) remains inA A

the class. The sum of polyhedra of 3(7 ) can turn out to be a polyhedron outside of
3(7 ), but it is, of course, always an integral g-polymatroid.

Remark. Demand sets in Gale’s model (see Example 2) are PM-sets. In fact, the
kpolytope given by inequalities x(K) # 1, x $ 0, k [ K, is the simplex D 5 coh0, 1 ,K k

k [ Kj. D belongs to 3(7 ), where 7 is the trivial laminar set consisting of theK

collection of all singletons and the whole set K. All faces of D are defined by similarK

systems of inequalities. Thus, demands, as integer points of the faces of the simplex D ,K

are PM-sets. h

5.1. (&3-convex functions

KA function f :Z → R < h 1 `j is said to be (&3-convex if it fits Definition 4 for the
class of PM-sets.

Murota and Shioura (1999) considered such a class of functions and called these
hfunctions M -convex, see, also Murota (1996, 1998).

How does one construct (&3-convex functions? Well, since (&3 is a class of
Kdiscrete convexity, the convolution of a few (&3-convex functions, defined on R , is1

(&3-convex.
The sum of (&3-convex functions is not (&3-convex in general, since the class of

integral g-polymatroids fails to be closed with respect to intersections. However, we
have the following

Proposition 5. Let 7 be a laminar family of subsets of K. For every A [ 7, let
Kf :Z → R < h 1 `j be a pseudoconvex function. Then the function f :Z → R < h 1 `jA

defined by
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Kf(X) 5 O f (X(A)), X [ Z , (21)A
A[7

is (&3-convex.

KProof. Recall that f *:(R )* → R, f *( p): 5 sup ( p(x) 2 f(x)), is called the conjugateKx[R

function or the Legendre–Young–Fenchel transform of f.

Let f and g be closed convex functions, such that epi( f *) 1 epi( g*) is a closed set.
Then, it is not difficult to check (see the proof of Proposition 3) that ≠*( f 1 g)( p) 5

K
≠( f *g*)(x) holds with x [ ≠*( f *g*)( p), where ≠f(x) 5 h p [ (R )*u p( y) 2 p(x) # f( y) 2

Kf(x) ;y [ R j denotes the subdifferential of f at the point x. This implies that ≠*( f 1
Kg)( p)) 5 ≠*f( p ) > ≠*g( p ) for some p and p such that p 5 p 1 p , p , p [ (R )*.1 2 1 2 1 2 1 2

The effective domain of the conjugate function ( f )*, A , N, is located on the lineA

* *R(1 ). Therefore, the sum of the epigraphs epi( f ) 1 epi( f ) is closed for any A ± B.A A B

Hence, areas of affinity of the function o f (X(A)) are intersections of strips of theA[7 A

form a # x(A) # b , A [ 7. These areas of affinity are polyhedra of 3(7 ). The latterA A

polyhedra are integral g-polymatroids. Hence f is an (&3-convex function. Q.E.D.
By Proposition 5 and Example 5, we have the following.

Corollary 1. Let 7 be the collection of singletons and elements of a chain # 5 hK 5

C . C . ? ? ? . C j. Let f :Z → R < h 1 `j, k [ K, and g :Z → R < h 1 `j, i 5 1, . . . ,1 2 m k i

m, be pseudoconvex functions. Then the function

m
k k Kf(X) 5O f (X ) 1Og ( O X ), X [ Z , (22)k i

k[K i51 k[Ci

is (&3-convex.

We now propose several examples of (&3-convex functions to illustrate Corollary 1.

Example 6. Take separable convex functions, i.e., functions of the form

kf(X) 5O f (X ),k
k[K

where f (k [ K) are convex functions on R. They fit (22) for 7 consisting only ofk

singletons. These functions are (&3-convex, and Theorem 2 along with this class of
functions is precisely a multidimensional generalization of Henry’s result (Henry,
1970). h

Example 7. Take now quasi-separable convex functions, that is functions defined as
follows,

k k Kf(X) 5O f (X ) 1 f (O X ), X [ Z ,k 0
k[K k[K

where f and f , k [ K, are convex functions on R. They also fit (22) for 7 consisting of0 k

singletons and the one element chain # 5 hKj. h
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Theorem 2 along with this type of (&3-convex functions extends the existence result
in Bevia et al. (1999).

The indifference levels of the utility functions appearing in Quinzii (1984) and
Svensson (1984) also fit (22). In fact, the essential feature of Quinzii’s model is that
consumers never have use for more than one item of any of the goods. Formally, the
consumer utility function takes the form u(Z, m) 5 max u(k, m), for any Z [ h0,k[supp(Z )

K1j , m . 0. The associated indifference levels, such a function, are of the form
m mq (Z) 5 min q (k). In the following Example 8, we show that these indifferencek[supp(Z )

levels are (&3-convex, and, moreover, also fit (22). This is a rationale underlying
Quinzii’s (1984) existence result.

KExample 8. Consider the function U :2 → R of the form U(A) 5 min u(k), with somek[A
Kfunction u:K → R. We show that it satisfies Corollary 1. For this, we extend U on Z as1

follows

KU(X) 5 min u(k), X [ Z , (23)k[supp(X ) 1

kwhere U(0) 5 max u(k) by convention, and supp(X) 5 hk [ KuX . 0j.k[K

Now, rank elements of the set K in decreasing order with respect to the values of u:
u(1) $ . . . $ u(n) $ 0, n 5 uKu. Set d 5 u , d 5 u(k) 2 u(k 2 1), i 5 2, . . . , n. And1 1 k

consider the following pseudoconcave function u :Z → R < h 2 `j, defined by

2 `, t , 0;
0, t 5 0;u(t) 55
1, t $ 1.

It is easy to see, that

U(X) 5 d 1 d u(X 1 . . . 1 X ) 1 ? ? ? 1 d u(X ). (24)1 2 2 n n n

In fact, let k be a maximal element in suppX. Then, the left hand side of (24) yields u(k),
while the right hand side sums up to d 1 . . . 1 d 5 u(k). Since d # 0 (for i . 1), the1 k i

functions d u, i 5 1, . . . ,n, are pseudoconvex. Therefore, the function d 1 d u(X 1i 1 2 2

. . . 1 X ) 1 d u(X ) fits (23) for 7 consisting of the chain # 5 hh1, . . . , nj . h2, . . . ,n n n

nj . . . . . hnjj. Thus, functions of the form (23) are (&3-convex. h

Example 9. Let K be partitioned, K 5 < K , K > K 5 5 with s ± s9. For each s [ S,s[S s s s9
Kspick a class of discrete convexity _ in Z and a _ -convex function f . Then, since thes s s

cartesian product of classes of discrete convexity is a class of discrete convexity, the
function defined by

f(X) 5O f (Xu ),s Ks
s[S

Kswhere Xu [ Z is the projection of X on K , is a P_ -convex function. hK s ss s[S

Example 9 and Theorem 2 together ensure that an exchange economy, in which
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mconsumers have preferences with indifference levels of the form q (X) 5 os[S
mmin q (k), will have equilibria.k[supp(X )>Ks

For example, the generalization of Gale’s model by van der Laan et al. (1997) is a
case in which the demands are products of PM-sets. They are obtained as products of
integer points of faces of different standard unit simplexes, P D . Hence, existence ofs Ks

equilibrium, in this model, can be obtained as a consequence of Theorem 1 (see Example
2).
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Appendix A. Proof of Proposition 2.

KDenote W 5 o W . Let Z* [ Z be such that, for any Z $ Z*, the aggregate cost ofh[H h 1

producing Z is larger than the total amount of money in the economy, i.e. C(Z) . oh[H

w for any Z $ Z*, where C(Z) 5 min o c (Z ). Z* exists by Assump-Kh Z5o Z , Z [Z l[L l ll[L l l

tion 4.
We slightly modify the preferences of consumers. Denote by T the amount of moneyh

Thsuch that (0,T ) | (W 1 Z*, o w ), h [ H. Then the function q defines theh h h[H h h

indifference level of the preference A which passes through the point (W 1 Z*, oh h[H
˜w ), or, equivalently, through the point (0,T ). Define the modified preference A byh h h

0setting its indifference levels as follows: For any m # m # T the indifference level ofh h

Ã passing through the point (0, m) coincides with the indifference level of A passingh h
m Th˜through the same point. For any m . T set q to be a parallel translation of q , i.e.,h h h

m T Khq̃ (X) 5 q (X) 1 m 2 T , X [ Z . (A.1)h h h

˜ ˜Let % 5 h(A , (W , w ) ; (c ) j be the modified economy. We assert thath h h h[H l l[L
˜equilibria of % and % coincide. In fact by Assumption 1, every consumer in % has a

positive amount of money, inferior to o w (see (3)), at an equilibrium. Nowh[H h

according to (2) and (3), at any equilibrium of %, each consumer has a vector of
indivisibles bounded by W 1 Z* 5 o W 1 Z*. However, for any X # W 1 Z* andh[H h

˜m # o w , the indifference levels of the preferences A and A passing through (X,h[H h h h
˜m) coincide. Therefore, the sets of equilibria of % and % coincide. Thus, we may assume

that (A.1) is already satisfied in the initial economy %.
We prove existence of equilibrium for the convexified economy co(% ).
Set Q 5 o T . Take the price cubeh[H h

KQ 5 h p [ R u 0 # p # Q, ;k [ Kj,1 k
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and define the price correspondence P:Q ⇒ Q through the following auxiliary construc-
tion:

For every h [ H, set

m Km ( p): 5 infhm : q (X) $ b ( p) 2 p(X), X [ Z , X # W 1 Z*j. (A.2)h h h 1

m ( p)h(That is m ( p) is such that the indifference level q ( ? ) ‘touches’ the budget seth h

B ( p).)h

Define now the indirect utility functions

p m ( p) Khu (X) 5 m ( p) 2 q (X), X [ Z .h h h 1

According to Assumption 3, these functions are pseudoconcave and, because of (A.1),
pthe functions u are bounded by T for any p [ Q.h h

pLet the aggregate utility function U be given by the co-convolution

p p KˆU (x) 5 min O u (x ) , x [ R ,O x 5x h h 1H Jh
h[Hh[H

and let the aggregate cost function C be given by the convolution

KC( y) 5 min O co(c )( y ) , y [ R .O y 5y l l 1H Jl
l[Ll[L

ˆ ˆRecall that u denotes the concavification of a function u, u 5 2 co(2u), where co(c)
denotes the convexification of a function c.

pLet y be a solution to
pmax U (W 1 y) 2 C( y).

Ky[R1

pSuch a solution exists, since C( y) → 1 ` with uuyuu → ` and U is bounded by Q 5 o Th h
p(since each u is bounded by T ).h h

p pDenote M 5 max U (W 1 y) 2 C( y). Then, U is a concave function; C is aKy[R1 K pconvex function and, for any x [ R , C(x) 1 M $ U (W 1 x) holds. Therefore, there1

exists a separating affine function of the form M 1 p9 with some linear function p9, i.e.,
we have

p KC(x) 1 M $ p9(x) 1 M $ U (W 1 x), x [ R . (A.3)1

For p [ Q, let P( p) be the set of separating linear functionals p9 satisfying (A.3).
pWe claim that P( p) , Q, i.e. P:Q ⇒ Q. In fact, monotonicity of C and U implies that

K p pp9 $ 0, and hence P( p) , (R )* . For any p9 [ P( p), there holds U (W 1 y ) 21
p p p p p pp9(W 1 y ) $ U (W 1 y ) 2 C( y ) $ 0. Therefore, we have Q $ U (W 1 y ) $ p9(W 1

py ). Since W is an integral vector with positive coordinates, we have W $ 1, which
9implies that p , Q for all k [ K.k

The set P( p) is convex and compact, as the set of separating linear functionals. Since
p pU is continuous with respect to p (every u is continuous with respect to p), theh

correspondence P is closed. By the Kakutani theorem, P has a fixed point, say
p* [ P( p*). Let us check that p* is an equilibrium price for co(% ).
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p* m ( p*)hObviously, y , Z*. Since q touches the budget set B ( p*), the followingh h

equality is satisfied
p*Argmax (u (x) 2 p*(x)) 5 co(D ( p*)).Kx[R h h1

K(Recall that D ( p) denotes the set of all X [ Z such that (X ,b ( p) 2 p(X )) is a besth h 1 h h h

element in the budget set B ( p) with respect to the preference A .)h h

We have Argmax( p*( y) 2 C( y)) 5 o co(S ( p*)), because this holds for all pricesl[L l

(see (14).
p*Thus at price p*, because of (15) and (14) (U and C are aggregate functions, the

co-convolution and the convolution, respectively), we have

W [O co(D ( p*)) 2Oco(S ( p*)). (A.4)h l
h[H l[L

˜And p* is an equilibrium price for the convexified economy co(% ). Q.E.D.
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