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Introduction

The theory of social choice deals with both the processes and results of col-
lective decision making. In this book, we explore some issues in the theory of
social choice and mechanism design. We examine the premises of this theory,
the axiomatic approach, and the mechanism design approach.

The main questions are what is collective interest, how is it related to
individuals’ interests, how should one design social interactions, laws, and in-
stitutions? These questions are not new. Philosophers, social scientists have
indeed pondered upon them for years. And, in fact, the organizational struc-
tures of many social institutions - courts, parliaments, committees and reg-
ulatory boards - often lack a sound theoretical base. This is not surprising,
as it is, indeed, difficult to provide for a comprehensive formalization of the
activities of such organizations. Nevertheless, there has been a definite trend
towards providing clear and unambiguous rules for collective decision mak-
ing. These very rules constitute the body of social choice theory and its main
object.

The basic problem of social choice

We explain here more precisely what a problem of social choice is, what
approaches might be used to tackle it, and what kind of solutions it leads to.
We introduce a few basic notions in preliminarily fashion and, in doing so,
we stress both motivations and explanations.

To start with, we consider a group N of persons (people or organizations),
called agents or participants. A social choice problem arises when this group
is summoned to make a choice among one or several objects (projects, plans,
candidates, etc.). We shall call these objects ‘alternatives’ and shall assume
they form a set A. In practical set-ups, it is often difficult to describe the set of
alternatives precisely, a priori, but in formal set-ups we shall always consider
that the set A is both given and clearly outlined. Sometimes it might turn out
that it is more interesting and crucial to analyze how the set A forms than
to investigate the choice itself. In particular, the addition of new compromise
alternatives to the set A could be a crucial issue, as it might be the only way
to yield a satisfactory solution to a social choice issue. However, we put this
issue aside (since we are as yet unable to describe appropriately the creative
process by which alternatives form) and consider, in the sequel, the set A to
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be a given, fixed, abstract set. We therefore focus on the formal choice from
a given set A.

In what follows, we restrict ourselves to choices of a single element from
the set A. This is not as major a restriction as it may appear. First, it
is perfectly possible without any special modification to consider the more
general problem of choosing a subset X from the set A. Second, the set A
could be substituted by the set 24 of all its subsets (or some feasible part
of 24). And we deal within this set-up with a single-valued choice again. Of
course, there will be subtleties here. However we wish to keep matters simple
for the time being. We will consider from now on that a problem of choice is
solved whenever a single element from A is determined.

Clearly before any decision making takes place, one should make sure that
all participants be familiar with all the alternatives and understand them in
order to evaluate them. This stage is crucial, but we shall not examine it here.
Instead we shall assume that this stage is over and that every participant has
a clear preferences on the alternatives at stake. It is immaterial to the issue
whether a participant bases his evaluations on subjective considerations or
objective characteristics, whether the agent behaves egoistically or altruisti-
cally. The preferences elaborated by agents are modelled as binary relations,
in fact as linear orders (see details in 1.1).

Now we come to the issue of choice. Our group comes up with the choice
of an alternative, based on both the individuals’ preferences and on some
rule. In this whole process, the participants’ preferences are the inputs to the
choice problem, while the chosen alternative is the output; the choice itself
is a kind of black box, which we are going to examine closely.

Simply put, one can imagine social choice as follows. Participants state
their preferences on voting papers and then send these papers to a processing
center. The center then processes the information. A bundle of voting papers
of the agents is called a preference profile and is denoted by Ry. An alter-
native a, selected at this profile Ry, is denoted by f(Ry). The point is that
we do not know the profile Ry beforehand. Therefore, the processing cen-
ter should select f(Ry) for a sufficiently wide domain of preference profiles.
The center’s activity is described by social choice function (SCF), that is a
mapping

f : {preference profiles} — A.

The aim of the theory of social choice is both to investigate concrete SCFs
and to construct new SCFs, which exhibit specific and desirable properties.
Going a step further, we might address the issue of choice between different
SCFs. We might wonder whether the central authority has the power to
enforce a selected alternative. Will the participants agree on the alternative
proposed by the center? This will depend on the center’s authority, which in
turn depends on parameters such as power, honor, intelligence or skill.

We now make two points. First, choice depends on a preference profile.
However, it may depend on many other circumstances and factors, such as
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the experience of agents, their knowledge, their ability to agree, to cheat, and
so on. These factors are not always explicitly fixed. Therefore a rule may lead
to different outcomes for the same preference profile. And in fact the most im-
portant source of multi-value outcomes is the multiplicity of equilibria in the
game generated by the social choice mechanism (see 1.3 and 1.4). Therefore,
social choice theory deals with multi-valued social choice correspondences
(SCCs)
F : {preference profiles} — 24,

as well as with SCFs.

An SCC, F, assigns a subset F(Ry) in A to a preference profile Ry,
where F'(Ry) is usually non-empty. The interpretation of an SCC is already
less clear than that of an SCF. One can understand that every element from
F(Rn) can be chosen for the profile Ry. Of course, only those SCCs, F,
whose associated sets F'(Ry) are not too large will be of interest.

Second, a social choice function (or correspondence) may turn out to be
undefined for certain “not too nice” profiles Ry. This might definitely turn
out to be a drawback of a particular rule. We might not be too happy with
a rule that fails to do its job for certain profiles. However a rule that works
well on a restricted set of preferences might do. We discuss this further in 1.4
and Chapter 3.

Axiomatic approach

The main object of social choice theory is thus a SCF (or at least a
SCC whose set of outcomes is small enough) determined on the set of all (or
maybe sufficiently wide a subset) preference profiles. However, there is a great
number of such SCF's, although most of them will turn out to be rather absurd
or of little or no interest from the viewpoint of social choice. The theory of
social choice began with the study of concrete SCFs, based on “reasonable”
assumptions and desiderata (majority rule, Borda’s rule, Copeland’s rule,
and so on). As it turns out, every rule has its qualities and drawbacks. And
in fact, as soon as a particular drawback is dealt with, others emerge. The
thorough comparison of various SCFs has helped define and select an array
of desirable properties for SCFs. We discuss in detail in 1.2 and 1.3 some of
these properties: Pareto optimality, neutrality with respect to alternatives,
monotonicity, some form of democracy (anonymity, absence of dictatorship,
veto principle), non-manipulability.

The axiomatic approach to social choice has evolved gradually from the
following process. First desirable properties of SCFs are formulated, then
the class of SCFs possessing these properties undergoes complete description
and thorough study. Arrow’s impossibility theorem is a classic example of
this approach. It states that there exists no preference aggregating rule (see
1.A1), which satisfies simultaneously several “natural” conditions. Arrow’s
somewhat negative result stimulated a plethora of studies whose conclusions
turned out to be just as depressing: an apparently “innocuous” set of re-
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quirements on SCFs yielded either inconsistency or dictatorship, a rather
unpleasant feature.

The gloomy character of these studies stimulated the search for an alter-
native approach to social choice issues. This alternative approach is called
mechanism design. The body of this literature was constituted by and large
in 1973, although some ideas formed before. Our book is devoted to the study
of mechanism design.

The revelation issue

The axiomatic approach explicitly or implicitly assumes that the center
knows the preference profile of agents Ry at the time of decision making. In
this case, the social choice problem boils down to a multi-criteria optimiza-
tion problem. However there is a difference between these two problems and
in order to clarify this we bring in the issue of revelation. How does the center
learn about the profile? In principle, only from the participants’ messages.
Indeed, participants’preferences are usually personal and intimate. The par-
ticipant is the only one to know them. Given this, a question arises: will the
participants likely communicate their preferences truthfully? This is a cru-
cial question which brings the preference revelation issue to the fore. (The
numerous attempts to reconstitute utility functions for a society, a managing
group, a collective enterprise, or individual worker, be it through computa-
tion methods or direct interrogation, will convince the reader of the relevance
of this issue.)

Now, if a participant is really interested in the outcome of a social choice
issue and has the power to influence the outcome (if not, why bother to ask),
then why should we expect this participant to truthfully reveal his genuine
preferences? Whether a participant might want to reveal his true preferences
or to misrepresent them by manipulating either his preferences or any other
personal information, will essentially depend on the decision rules adopted for
the social choice problem at stake. And, in fact, it is quite possible that an a
priori “reasonable” Pareto optimal rule (assuming truth-revealing behaviour)
yield non-optimal social outcomes, because agents will have distorted their
preferences.

In short, agents can, and most probably will, behave strategically. This
is precisely what distinguishes social choice theory from multi-criteria op-
timization theory. And, in fact, a realistic description of the behaviour of
participants is an intricate problem which draws both on social choice theory
and on game theory. We return to this issue later. Meanwhile, we merely state
here that we must add to a social choice rule a certain number of behavioral
assumptions. These assumptions specify and formalize our thoughts about
the participants’ actions and information. The assumption about truthful
revelation of preference is the simplest, albeit not the most realistic.
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Social choice mechanisms

The strategic approach to social choice, while bringing to the fore quite
a few delicate points, opens in turn new opportunities. In the axiomatic
approach, preferences perform a double task. On the one hand, they indicate
the aims of participants and allow to evaluate the outcome. On the other
hand, viewed as messages, they provide the means for attaining these aims.
One task task might impede the other. However, agents’ messages might not
consist only of preferences.

Messages can be anything as long as they yield good outcomes. In fact,
many real-life choice procedures are not given as SCFs. Take for example, the
two stage election procedure. This electoral procedure works as follows: the
two most popular candidates remaining on the electoral register after the first
round, are then selected according to a simple majority rule which constitutes
the second round. The point is the following: even when preferences serve as
messages, these preferences may differ at different stages of the procedure.
The social choice mechanism approach decisively separates aims and means.

With this we pinpoint the core notion of this book, namely the notion
of a social choice mechanism or, more simply, the notion of mechanism. A
mechanism consists in two things: a bundle of strategy sets S; (one for every
agent i € N) and an outcome function, 7 : II,ey S; — A. Every agent starts
by selecting a message s; € S;. Then the outcome function 7 determines an
alternative a = w(sn), where sy = (s;)ien-

A priori, no restrictions are imposed on the structure or size of the sets S;.
However, in practical applications, it is essential that these messages be kept
simple, and that the mechanism (i.e., the mapping 7) be clearly defined and
stated. All participants are supposed to know the mapping 7, which means
that participants know the effect of their actions on the outcome. Ideally,
any formalized procedure of choice should be organized in this fashion. Of
course, this ideal set-up seldom obtains. Indeed, real-life procedures generally
incorporate both unclear messages and inconclusive outcomes, moreover they
may depend on external factors, etc.

The difference between the SCFs, or axiomatic approach to social choice,
and the mechanism design approach can be expressed as follows. In the first
approach, we know the preference profile Ry and we impose an outcome
f(Rn). In the second approach, we are not interested in the preferences
of agents; instead we hand them an instrument, namely a mechanism, and
tell them: “And now sort it out for yourselves.” The SCF approach, as we
said, contains an in-built difficulty: the issue of preference revelation. The
mechanism design approach, while dispensing with it, formulates it explicitly
as the research of an appropriate solution concept of some game.Thus the
mechanism design approach circumvents Arrow’s seemingly dead-end road
by opening new ways to the study of social choice.
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The solution concept issue

Now let us discuss the agent’s behaviour problem in more detail. Fix a
mechanism 7 : Sy = IT;cnS; = A and a profile of true preferences Ry =
(R;)ien. This enables us to build up a game G(7, Ry) in which strategies
are elements of S; and situations sy € Sy are evaluated with the help of the
outcome function 7 and the preferences R;. At first glance, it seems that we
just replaced a problem of choice from A by a problem of choice from Sy .
However, this is not as straightforward as it seems. We now stress two points.
This new choice problem is simpler than the former: every agent i receives an
unrestricted right to dispose of his set S;, and to choose individually from it.
However every agent’s problem becomes more intricate. Indeed, an agent will
have a more difficult time evaluating his strategies s; in this set-up. Of course,
he can easily evaluate a bundle sy with the help of 7 and R;. Nevertheless,
now sy depends not only on the agent’s component s;, but also on all other
agents’choices (s;);i.

This, in turn, brings about a difficulty familiar to any game theoretic set-
up: the issue of solution concepts. What is the solution of a game? Experience
of game theory teaches us that there is no satisfactory single answer to this
question. The point is that preferences alone do not allow the outcome of
a game to be predicted, although they constitute by and large its most im-
portant input. Indeed, another important input is the agents’ information on
the behaviour of the others, viz. the information each participant has about
his and others’ strategies and reactions. This, in turn, may depend on some
knowledge about the preferences of others, on their ability to communicate
with each other, to coordinate their actions and so forth. Game theory has
not yet elaborated or provided a fully consistent and complete picture of all
this. Instead, various equilibrium concepts have been proposed. Which one
of them proves the most adequate for a specific purpose depends usually on
the particular situation and taste of the researcher.

The Nash equilibrium concept is by large the most popular solution con-
cept in game theory. It consists in a bundle of strategies si = (s})ien such
that for any agent ¢ € N the strategy s} is the best possible strategy for ¢,
given that other agents use strategies s;. The content of the Nash solution
concept is explained in detail in any game theory textbook (see also Chapter
2 here), thus we do not describe it here. However, note that it is difficult to
find discussions about the way by which agents attain equilibrium in text-
books. In fact, often enough we do not have any clear understanding of the
agents’ behaviour out of equilibrium, which in turn makes it difficult to say
which equilibrium they might attain, and whether they generally attain it.
One can only hope that when they do reach an equilibrium, they remain
there.

There is one interesting and important case in which it is relatively easy
to find a Nash equilibrium. This is when there are dominant strategies, that
is, when agent i with preference R; has a strategy s} which is best (with
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respect to R;) for any strategy choice of other participants. In this case,
indeed, agent 7 does not have to make sophisticated guesses about what the
others will do; he may stick to his dominant strategy s;. If all agents have
a dominant strategy, one might confidently expect that the outcome of the
game be 7(s%).

The notion of dominant strategies is not very popular in game theory
because game theory focuses on the analysis of concrete games. Such games
usually do not support the existence of dominant strategies. The issue is
quite different in the theory of mechanism design, where one of the main
issues consists in constructing mechanisms which exhibit dominant strategies
(see Chapter 3 for more detail). Incidentally, a standard question in mech-
anism design is whether we can exhibit a SCF for which truthful revelation
of preferences would be a dominant strategy for every agent. As we shall see
later, there are very few cases in which such a function can be exhibited. In
general, the requirement of existence of dominant strategies for all profiles
of preferences imposes strong restrictions on mechanisms and often allows a
complete description of such mechanisms.

There are other solution concepts for which the agent strategy formation
takes place on an individual basis, i.e., without any latent cooperation be-
tween agents as is the case in Nash equilibrium set-ups. We mention only
the maximin and sophisticated equilibrium concepts, which reflect opposite
degrees of agents’ knowledge about the interests of the other members of the
group. Note also that dominant strategies guarantee neither the optimality
of outcomes nor coalitional non-manipulability. This leads us to the class of
solution concepts which explicitly take into account the willingness of agents
to cooperate and in practice to form coalitions.

Assume agents may communicate freely with one another and coordi-
nate their actions. A new possible difficulty arises since, in effect, any such
agreement is itself a social choice problem. For example, participants of some
subgroup may find out that, notwithstanding their having agreed upon some
actions (and assuming the others keep their strategies fixed), they can im-
prove the outcome for all members of the coalition. It is natural to think
that they would swiftly impair the formed Nash equilibrium. An equilibrium
is called coalitional or strong if no coalition can improve the outcome of its
members. If the reactions (threats) of others are taken into account, then
other solution concepts emerge (such as the core). We elaborate upon these
issues in more detail in Chapters 4 and 5.

The relationship between the theory of social choice mechanisms and game
theory can be summed up as follows. A mechanism 7 can be viewed as a rule
of a game, that is, viewed as its material part. And to set-up a game, one
should fix the aims of the agents, that is, a preference profile Ry . Therefore we
might associate to any mechanism a series of games which have the same rules
but variable preferences. Finally, in order to evaluate how the mechanism
functions, we must add a solution concept.
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Clearly a game G(7, Ry) can have several equilibria. The important thing
is to ensure that at least one equilibrium exists, because if not, this means that
the solution concept does not describe appropriately the agents’ behaviour
within the game G(w, Ry). We say that the mechanism is consistent with
respect to a given solution concept if there exists an equilibrium, for any fea-
sible profile Ry. The SCC, F, is implemented by the mechanism 7 if F/(Ry)
is the set of equilibrium outcomes in the game G (7, Ry ). The implementabil-
ity of an SCC can be viewed as a desirable property, and indeed, as a sign of
its viability. We can think of SCCs as “wishes”. Their implementability just
means that our wishes can be enforced. Note that other important proper-
ties, like monotonicity or Pareto optimality are closely related to the issue of
implementability of an SCC. This means in practice that “bad” (perverted,
unrealistic or absurd, etc.) SCCs are difficult to implement. Conversely, im-
plementable SCCs turn out to be automatically “good”. Thus, in some sense,
implementability warrants some desirable properties of social choice.

In this introduction, we discussed mechanisms, and solution concepts.
We elaborated upon consistency, and stressed the fact that the theory of
social choice mechanisms is a synthesis of abstract social choice theory and
game theory. The theory of social choice mechanisms, unlike game theory,
does not fix preferences of agents. Rather, it focuses on a wide spectrum
of aims. Mechanism design does not only investigate real-life mechanisms. It
also, and this justifies its name, devotes its efforts towards the designing of
rules exhibiting nice properties. The hope here is to provide new tools for
concrete real-life collective decisions. This pragmatic feature of mechanism
design theory distinguishes it from both the theory of abstract social choice
and game theory.
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1. Basic Concepts

In this chapter we introduce the main concepts used in the sequel, that is pref-
erences and preference profiles, social choice functions and correspondences
(Section 1.1). We also recall various properties of these correspondences (Sec-
tion 1.2), and discuss some important properties like monotonicity (Section
1.3). We define the notion of social choice mechanism (Section 1.4) and its
rough form: the effectivity function or blocking (Section 1.5). In Appendices
1.A1 and 1.A2, we discuss two seminal theorems of social choice theory, that
of Arrow and that of Gibbard-Satterthwaite. Both are closely related with
Mueller-Satterthwaite theorem from Section 1.3. In Appendix 1.A3, we in-
vestigate the notion of minimal monotone SCC.

1.1 Preferences

(1.1.1) As we mentioned in the introduction, a social choice problem arises
when a group of agents is asked to chose one alternative within a set A of
alternatives. This set might be a set of dishes in a menu, of books in a library,
of candidates in a presidential election, of production plans and so on. In the
sequel, however, we consider A as an abstract set. Yet, what we need to know
are the preferences of the agents on this set.

Preferences can be described in different ways. Often enough, preferences
are given through wtility functions. Let v : A — R be a function on the set A
with values in the set R of real numbers. Intuitively, the number u(a) might
be interpreted as the ”utility” of alternative a € A. If u(a) > w(b), then
alternative a is preferred to alternative b; and if u(a) > u(b) then a is no less
preferable than b. Thus every utility function w induces a binary relation R
on the set A : aRb if and only if u(a) > u(b). Nowadays, it is more usual to
start from a binary relation R.

The underlying of such an ordinal approach is that, after acquiring suffi-
cient knowledge about the proposed alternatives, an agent is always able for
any two different alternatives to state whether he! prefers one to the other or
whether she considers them equivalent. Such an approach seems to be both

! Throughout this book the pronouns "he” and ”his” are used in a generic sense
encompassing both sexes.
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more acceptable and simpler compared to the cardinal approach, because it
frees us from the issue of utility units and their comparability between agents.
The ordinal approach does not prevent an agent to have a utility function,
but it regards somehow the specification of her utility function as being her
own business. Of course, in a number of cases, there may be an objective
ground to working with an valuation in utility units. For instance, it may
occur that alternatives be evaluated in monetary units. However, a strict fol-
lower of the ordinal approach might say that enlarging the set A, namely by
adding money, does the trick. In effect, in this case, the preferences are stated
on pairs of (alternative, money).

Thus it is natural enough to state preferences as binary relations in social
choice theory. Transitivity of preferences (or rationality of individual choice)
is less innocuous an assumption on preferences. We discuss this issue more
formally.

A binary relation on a set A is a subset R C A x A. We write aRb or even
a = b, instead of (a,b) € R, and read it : a is not worse than b. A weak order
on a set A is a binary relation R satisfying the following two conditions:

1. (Completeness) For any a,b € A, aRb or bRa holds.

2. (Transitivity) If aRb and bRc then aRec.

A weak order is usually called a preference. Preference relations induced
by utility functions are weak orders. The converse is true if the set A is finite
and also practically in all interesting cases.

Since we shall deal further with weak orders and their properties, it is
convenient to introduce here a few concepts and notations. We shall consider
predominantely cases in which the set A is finite (| A | denotes the number of
elements in A.). However, most concepts introduced here are easily extended
to the case of infinite sets.

In the sequel, we consider preferences (or weak orders) of a special type,
namely linear orders. They satisfy the additional following condition:

3. (Antisymmetry) If aRb and bRa then a = b.

Linear orders define finer preferences than weak orders, in that they en-
able to distinguish any two different alternatives from each other. Restricting
ourselves to linear orders, while not altering the generality of our analysis,
simplifies somewhat both discussions and further conceptual constructions.
Actually, from a theoretical point of view, weak orders are preferable due to
the functorial nature of weak orders.

Linear orders are also called rankings, because they rank all elements of
Az =29 = ... = &y, m = |A].

One sees readily that the set L = L(A) of all linear orders on A contains
m! elements. The best element of A with respect to R (in this case x1) is
denoted further max R and the worst z,, , min R.

Let X C A be a subset. R | X denotes the restriction of R to X, i.e.
a binary relation R | X = RN (X x X) on the set X. It is a linear order,
therefore the notations maxR | X and min R | X are meaningful.
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(1.1.2) Shuffling Orders. Let R and @ be two linear orders on A, and
A = X UX be a subdivision of the set A into two disjoint subsets X and X.
(X will denote the complement to X in A4, i.e. A\ X ; the symbol Ll denotes
a disjoint union). One forms a new order S = (R | X, Q | X) as follows: any
element of X is preferred to any element from X ; within X (correspondingly
within X) the rankings are as in R (correspondingly in Q). For example, let
R be the following ranking of alternatives

a=b=c-d-e>fi-g,

and let X = {b,e, f}, and X = {a,c,d, g} , then the ranking (R | X, R| X)
consists in :

b-e-f=a=c>dsg.

Expressing this somewhat loosely, we say that in (R | X, R | X), the
subset X is ”propped up” and the subset X is "propped down”. Symbols
(x| X, * | X) or X = X will denote an arbitrary ranking where X is
propped up. The meanings of (R | X, x), (x, R | X) are straightforward.

(1.1.3) Lower Contour. In this paragraph, we introduce yet another
important and useful concept, that of lower contour. Let R be a linear order,
a € A. The set

L(a,R) = {z € A,aRz}

is called a lower contour of R with respect to a. It is the set of elements which
are not preferred to a. Evidently,

aRb < L(a,R) D L(b,R).
Symmetrically, we define a binary relation >, on L,
R*,Q & L(a,R) D L(a, Q)

where R and @) are preferences on A. Intuitively, R =, ) means that the
alternative a ranks higher (not lower) in R than in @). Consider the following
example:

T T a z
a a Yy a
Yy z x x
z Y z Yy

| Bo [ Bo [ By | Ra |

(The higher the alternative the better.) Here Ry =, Ra, R2 =4 Ri, R1 =4 Rs
(SO Rl and R2 are a—equivalent), R3 ta Rl, R3 ta RQ, R3 ta R4; but R1
and R4 are incomparable with respect to >, . The relation >, on the set L is
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reflexive and transitive, but is not complete. Here a certain duality peeps out
between alternatives and linear (or weak) orders: orders rank alternatives and
alternatives "rank (albeit not completely)” orders. In general, it is useful to
treat alternatives and agents in a symmetric way (viz. Danilov and Sotskov
(1987Db)).

(1.1.4) Preferences and Choice. The choice from A is obvious if there
is a preference R on A : it is max R. Sometimes one is restricted in choosing
only from a subset X C A. The natural candidate is then cg(X) = max R | X.
Thus every linear order R defines a choice function

c=cp:2\ {0} - A

such that ¢(X) € X for any nonempty X C A. We denote by 24 the set of
all subsets of A. The single-valuedness of cg follows from the fact that R is
not an arbitrary weak order, but a linear order.

Not all choice functions ¢ : 24\ {f)} — A can be obtained by this manner.
A choice function induced by a linear order, satisfies the following rationality
condition:

let Y C X and ¢(X) € Y, then ¢(Y) = ¢(X).

It is easy to check that the converse is also true. For every choice function
¢, we define a binary relation R as follows: zRy if € c({z,y}). R is called
the revealed preference and is transitive if ¢ satisfies the rationality condition.

As we mentioned above one could work with weak orders instead of linear
orders. On one hand, linear orders are convenient because the maximum and
the minimum are unique. On the other hand, restricting to linear orders does
not involve a loss in generality. In fact, there are ”sufficiently many” linear
orders in the sense that for any weak order ) there exists a linear order R
s.t. @ D R (i.e. order R is finer than Q).

(1.1.5) Preference Profiles. A linear order describes the preferences of
an individual agent. To specify the preferences of a group IV, we have to give
the preferences R; of every agent ¢ € N. A preference profile for the group N
or simply a profile is an array (R;);cn, where R; € L. It is denoted ordinarily
by Ry. In other words, a profile Ry is an element of Cartesian degree LY
of the set L = L(A) or a function Ry : N — L(A). Usually, we represent
profiles in tabular form:

8 2 w

= N 8
N 8w &
N S S

w

Here the group N consists of four agents 1, 2, 3, 4 and A = {z,y,z,u}. In
the columns above, the best alternatives figure at the top.
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It is straightforward to extend the previously introduced concepts to pro-
files. For example, given a set X C A, Ry | X = (R; | X, i € N) denotes the
restriction of the profile to the subset X. If K C N is a coalition of agents,
then Rk denotes the restriction of a profile Ry to K. Given the profiles
Ry and R of disjoint coalitions K and K', (Rk, Rk:) denotes a profile of
preferences of the coalition K UK’ coinciding with Rx on K and with Rg~
on K".

These are natural extensions. But here comes an important concept. Let
K, Rk, and a be respectively a coalition, a coalitional profile and an alterna-
tive. We define

L(a,Rk) = Ujex L(a,R;) ={zx € A, 3i € K s.t. aRx}.

If K =0, we define L(a, Ry) = {a} by convention.
For example, in the case of the profile given above, L(y, Ry3 43) = {y,u,z}.
Now a fundamental concept.

(1.1.6) Definition. An alternative a is Pareto optimal (or efficient) for
a profile Ry if L(a, Rn) = A.

We grasp the full power of this definition by considering its negation. If
an alternative a is not efficient, then there exists another alternative x which
is strictly better than a for all agents.

We denote the set of all Pareto optimal alternatives by Par(Ry).

At last, for any two profiles Ry and Ry and an alternative a, we write
Ry »q R\ if R; =, R} for any i € N.

1.2 Social Choice Correspondences

(1.2.1) Let N be a set of agents and A be a set of alternatives . In the sequel,
we always work with N finite and identify it to the set {1,2,...,n},n =| N |
when necessary. To simplify matters, we also assume that the set A is finite,
although this is not essential to the analysis. We suppose that | A |[> 2; the
case | A |= 2 being somewhat special.

A social choice function (SCF) is a mapping

f:LAYN — A

It is a formalized solution of a social choice problem. It recommends to choose
an alternative f(Ry) € A for any preference profile Ry € L. A SCF can also
sometimes be called a constitution. Only a few mappings from L(A4)N — A
qualify as ”reasonable” solutions and in order to be admissible, they should
satisfy certain conditions. We discuss some of these conditions below, review-
ing the others in Section 3.
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Let us start with a few concrete examples of social choice functions.

(1.2.2) Example: a constant SCF. Fix an alternative a € A and for any
profile Ry € LY, let f(Ry) = a.

The constant SCF clearly does not account for agent’s preferences. It is
therefore not overly exciting with respect to the aims of social choice.

(1.2.3) Example: a dictatorial SCF. Pick an agent iy € N and pose
f(Rn) = max R;,, where max R;, stands for the most preferred alternative
for agent iy.

A dictatorial SCF is already more interesting a SCF than the constant
SCF. However, it is certainly not the most desirable among all conceivable
SCFs. In effect, it is difficult to see where there is here an issue for social
choice, since everything rests on the rankings of one agent iy - the dictator.
Therefore dictatorial SCFs are also not overly exciting as they seem too
drastically unilateral.

(1.2.4) Example. We now consider a social choice function with stronger
democratic foundations - a simple majority rule. It selects the alternative
which ranks highest for the largest number of agents. It may occur that
two or more alternatives collect the same number of votes. The rule has to
provide then for a tie-breaking procedure. Usually it does not matter much
what kind of tie-breaking procedure one chooses, but more about this later.
For the time being, we would like the reader to notice that this rule calls
no less for criticism than the others reviewed above. Consider the following
profile Ry, where | N |=5,] A|=3:

x |z |y |y | z
z |z | z | z | x
yly | x| x| Y
[t 2[3]4]5]

According to this rule we have to choose either = or y. However, three partici-
pants out of five (the majority) prefer z to x, and three (different) participants
prefer z to y. And this should alert us.

In practical cases, one often uses the following modified version of this rule.
Here is a non-formal description of the latter. In a first stage, we consider
the two alternatives, which earned the largest amount of votes among the
participants. Then, one of them is selected by simple majority. In the case
described above, the two first alternatives to be selected are = and y. Then
finally x. However, even with this rule the criticism we just raised remains
valid, since three participants prefer z to x.

Anticipating a little, any SCF can call for some sound criticism as soon
as |A| > 3. In order to organize these criticisms properly, we need first to
list carefully our desiderata about SCFs, then either to control whether these
are fulfilled by a given SCF or not, or else try to come up with an SCF
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adequately suited to the latter. We shall return to this issue later on, but for
the time being we discuss another yet unsuccessful attempt at constructing
a satisfactory social rule.

(1.2.5) Example. Let Ry be a preference profile. An alternative a =
¢(RN) is a Condorcet winner if it wins (i.e. collects more than a half of all
votes) in pairwise comparisons with any other alternative. For instance, al-
ternative z is a Condorcet winner in Example (1.2.4). Moreover, a Condorcet
winner possesses the nice following property: it is uniquely determined. Un-
fortunately enough, in many cases, there is no Condorcet winner alternative.
Consider the following example,

=N e 8

T |y |y
y | 2z | =
z | x| x
112

Here three agents prefer x to y, four agents prefer y to z, and again three
agents prefer z to x. Thus there is no Condorcet winner alternative in this
case. Condorcet (1785) uncovered this phenomenon, for the first time, while
studying a voting issue. In fact, 1785 marks the very beginning of the theo-
retical study of social choice problems, while the practice of social choice is
immemorial.

One might choose to be unworried by the non-existence of a Condorcet
winner. In fact, there are some ways to deal with the issue. A first path
consists in restricting the rule to the subset of profiles for which such winners
exist. A second path consists in adding some other alternative to the set of
alternatives, when the issue of non-existence arises. Although neither these
paths is a good solution to the issue, none is unfounded.

For instance, in the first alternative path, we could follow the unanimity
”rule”, which would mean to choose the best preferred alternative for every
agent (if such an alternative exists) and refuse to choose otherwise. However
the unanimity ”rule” yields a choice outcome only in absence of conflict, a
rare and exceptional situation. The natural and interesting question - how
often do Condorcet winners exist?- is out of the scope of this book.

We already sensed, through our analysis of Example (1.2.4), that many
natural procedures whose choice-outcome is single-valued for ”general” pro-
files, may however yield multi-valued choice in some special profile-instances.
Thus the specification of a SCF requires almost always the additional speci-
fication of a ”tie-breaking” procedure. This leads to the following definitions.

(1.2.6) Definition. A social choice correspondence (SCC) is a multi-
valued mapping (a correspondence)

F:LAYN =24 or F: LAY = A
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We assume usually that F(Ry) # 0, for any profile Ry € L. The notion
of SCC can be interpreted as follows: given a profile Ry, a choice-outcome
is an element of the set F(Ry). With this definition, a SCF is nothing else
than a single-valued SCC.

Of course, ceteris paribus the finer the SCC, the better. What would be
the utility of the following ”constant” SCC, which maps every profile Ry
into F(Ry) = A? However, a SCC comes in quite handy since it is easily
transformed into a SCF by any choice function ¢ : 24\ § — A. Tt suffices to
pose f(Rn) = ¢(F(Ry)). Often, the choice function ¢ is defined through an
auxiliary linear order Ry on A (see 1.1.4).

Let us examine two examples of social choice correspondences.

(1.2.7) Example: the Borda rule. The idea underlying the Borda rule
is simple. It generalizes, in fact, the procedure presented in Example (1.2.4).
However, there is an important distinction with respect to the simple majority
rule. It does not focus only on the ”"best” alternatives, rather it considers a
full-range ranking of alternatives: those ranking second, third etc. Namely the
score or points of every alternative is computed as a function of the position
it occupies in agents’ rankings. The Borda rule then selects the alternatives
which collect the greatest number of points. More precisely, it associates with
every alternative x € A a number

u(z, Ry) = Z | L(z, R;) | -
ieN
Recall that the integer | L(x, R;) | indicates the place occupied by z in
ranking R; as measured with respect to the bottom. Then we set

F(Ry) = Argmaxu(., Ry).
Thus F(Ry) is the set of alternatives yielding the largest values of the func-
tion u(., RN)

The construction of the Borda rule rests on the number of elements in
L(z, R;), but in the same spirit, one could construct other rules by considering
any set function depending monotonously on L(z, R;). In fact, the simple
majority rule in Example (1.2.4), is just a particular case. Incidentally, the
Borda rule is used in determining the best soccer player in soccer clubs. Soccer
experts are asked to rank the three best players in decreasing order; then a
computation operation is performed on each individual ranking: a player in
first position collects three points, two points if in second position, one point
if in third position; eventually, each player’s final number of points over all
experts’s ranking is computed and the player collecting the highest number
of points is declared the best player. The advantage of these types of rules is
that they can be applied to any N and A.

(1.2.8) Example: the Pareto rule. The Pareto rule is based on a simpler
idea than the Borda rule. One compares and selects alternatives with respect
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to the size of the set L(x, Ry) (the largest possible set L(x, Ry) being clearly
equal to A). The set Par(Ry) is never empty (when A is finite), since it
clearly contains max R; for every agent i. Therefore Par : LV = A is fully-
fledged SCC. However, Par(Ry) may end up being quite large: somewhat of
a drawback.

(1.2.9) Properties of Social Choice Correspondences. In our review
of a few examples of SCCs, we discovered that each of these rules had some
desirable and undesirable features. It is now time to discuss the properties
of social choice correspondences more thoroughly. We cover only the most
standard properties here.

We suggested above that fine SCCs, i.e. for which the sets F'(Ry) are of
small size, are desirable. Thus a desirable property of SCCs is ”fineness”, in
the sense of associated size of the sets F(Ry) (the finest SCC being a SCF).
However ”fineness” is neither the most important nor the sole requirement
on SCCs (see the conditions listed below). Therefore it is often necessary to
sacrifice single-valuedness in order to satisfy other important requirements. It
is difficult to evaluate either when it is legitimate to sacrifice single-valuedness
with respect to other requirements or when on the contrary to consider that
the set F(Ry) is really too "big”. For example, one usually agrees that the
Pareto rule is a good rule, albeit not overly refined: the set F'(Ry) is very big
(see Makarov et al. (1982) about evaluations of number of Pareto points).

It is not necessary to force all Pareto optimal alternatives to figure in the
SCC. A more important requirement is that F'(Ry) consists of Pareto optimal
alternatives only. In fact, it would be rather absurd to offer in the choice
menu an alternative, when there exists another alternative strictly preferred
by all. However, it may sometimes happen that some socially or otherwise
meaningful, albeit not Pareto optimal, alternative ought be included in the
choice menu of a SCC.

(1.2.10) Definition. An SCC F' is Pareto-optimal (or efficient) if, for
any profile Ry,
F(RN) C Par(Rn).

The efficiency property is satisfied for a majority of ”reasonable” social
choice rules. In particular, the Pareto rule, the Borda rule and almost all
its variations, the dictatorial rule in Example (1.2.3) are efficient. On the
contrary, the constant rule (in Example (1.2.2)) is not efficient. Moreover the
reader will notice that efficiency of a SCC implies another property: for any
alternative a € A there exists a profile Ry such that F(Rx) = {a}. This
property is usually called sovereignty.

The following two properties - anonymity and neutrality - reflect re-
spectively some requirement about equality of agents and/or alternatives.
Anonymity expresses the idea of equality of agents. Let o be a permutation
of N, i.e. a one to one mapping of N into V. Given a profile Ry, we denote
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by R% the permuted profile in which agent i’s preference is given by R, ;).
An SCC F is called anonymous if

F(Ry) = F(RY)

for any profile Ry and any permutation o : N — N.

We can visualize anonymity as follows: suppose a center collects bulletins
bearing agents’ signatures, however its decisions doesn’t depend upon them.

The rules in Examples (1.2.2), (1.2.4), (1.2.5), (1.2.7) and (1.2.8) are
anonymous, but the rule in Example (1.2.3) is not. This is understandably
because ” dictatorship” and ”anonymity” stand completely in opposition on
the scale of democracy. Anonymity is a desirable property in many cases, but
we shouldn’t erect is as an absolute principle. In fact, one may be drawn,
to comply with other desirable properties, into allowing for ”small devia-
tions” from the anonymity principle. (We shall elaborate on this issue after
introducing the notion of blocking.)

The neutrality condition performs an analogous role with respect to equal-
ity of alternatives. Let p : A — A be a permutation on the set of alternatives.
Given a preference R, R” denotes the following permuted order:

TR’y < p(z)Rp(y).

Analogously R} denotes the permutation of a profile Ry. Neutrality of an
SCC means that :

F(Ry) = p(F(RY)).

In other words, if we permute the alternatives through p, the new profile
R’ selects those alternatives (F(RR;)) which rank in the position which were
occupied by the alternatives in F(Ry). An example will clarify the point.
Consider the following profile Ry :

x |y | z
y |z | =z
z | z | vy

L2 ]3]

and assume z is chosen for that profile. Then if we consider the new profile
R :

8 aw

=K 8 W
N N &8

12 ]3]

the neutrality property implies that alternative z be selected. The social
choice correspondences in Examples (1.2.3-8) are neutral, while the constant
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SCF, being precisely constructed to select one particular alternative what-
ever the profile, is obviously not neutral. As what regards the desirability of
neutrality for SCCs, the remarks made above about anonymity apply.

Returning to SCFs, we have to add the following caveat: it may be impos-
sible for a SCF to satisfy both anonymity and neutrality at once. Consider
the following example with three agents and three alternatives. Assume the
profile Ry looks like this,

e SRS
[NCIRSTEE SIS

wie 8 w

then the three alternatives z,y, z are absolutely symmetric and picking any
one of them violates symmetry.
In this context, we mention a result by Moulin (1983):

(1.2.11) Proposition. If | N |= n is divided by a number <| A | then
there does not exist a SCF which is simultaneously efficient, anonymous and
neutral.

It is important to remark here that the proposition applies to SCFs only.
In contrast, a SCC may satisfy all three properties (viz. Examples (1.2.7-8))
at once. In one word, we shall regard anonymity and neutrality as desirable,
albeit non-obligatory, properties of SCFs.

We devote the following section to a last property, monotonicity, which
we believe to be fundamental for SCFs and SCCs.

1.3 Monotone Social Choice Correspondences

(1.3.1) Interesting structures, deep and nontrivial assertions emerge in social
choice when the choice outcomes for different, but somewhat similar, profiles
are related to each other by some special features. In such cases, SCFs (or
for the matter, SCCs) become more than a simple array of choice outcomes
for varying profiles. In fact, it has a consistent structure.

Neutrality property somehow addresses this issue with respect to alterna-
tives. The idea underlying monotonicity is similar. It goes as follows : suppose
that in one instance, we behaved in a certain way, then we should behave in
a similar way if presented with a somewhat close instance.

We return to the case exposed in Example (1.2.4) in order to improve our
understanding.The profile Ry is,
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N 8
8 aw

z Y
z z
y T
1 4

N (=<

1 [2] 3] |

Recall that the alternatives z and y were chosen, in the first round, since
they collected the largest number of votes. In the second stage, alternative x
won over alternative y in the confrontation between x and y. Thus, in this
case, the outcome is: f(Ry) = .

Assume now, that the preferences R4 of agent 4 are modified as follows,
ie. Ry =(z»1z »y),

=l N 8
R w8
Wy v
e 8w
Ul 8

In this new setting, the alternatives « and z are chosen in the first round, and
alternative z wins over x by three votes against two, in the second round. Thus
the outcome of choice is f(R)j) = z. The reader might note the paradoxical
nature of this result. In the change from profile Ry to R/ the position of
alternative z in all agents rankings remained identical or increased (it moved
from the last place to the second place in agent 4’s ranking). This increase
in "attractiveness” of x is not reflected in the social choice outcome, since
oddly so, z fails to win the final round!

Moulin (1983) in Ch. 3, Sec. 2 documents even more striking an example,
in which a given alternative fails to win the election, albeit being propped
from the second place to the first one.

Of course, it is an undesirable feature of a social rule that the improving
of a candidate’s position hinder his being elected. Monotonicity (or strong
positive association and so forth) helps prevent such drawbacks.

Recall that Ry <, R’ means that for any agent aR;z = aRyz (ie.
L(z,R;) C L(z,R}) for any i € N). Intuitively, the position of a in profile
R’ improves with respect to profile Ry.

(1.3.2) Definition. An SCC F : LN = A is monotone if a € F(Ry)
and Ry <, Ry imply a € F(RY).

This property is also called sometimes in the literature - the strong mono-
tonicity property (Moulin (1983) and Peleg (1984)) or Maskin monotonicity.
Monotonicity seems very desirable a property for an SCC. The Pareto rule
and the dictator rule are monotone as is readily seen from the behaviour of
L(a,.). In general, the Borda rule and its modifications are non-monotone.
Related to this, we ask : how many monotone SCCs or SCFs exists there?
How can they be constructed? Is it possible to describe them exhaustively?
These issues are neither simple nor are they yet solved. In the meanwhile, we
give two simple examples.
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(1.3.3) Example. Fix an alternative a € A ("status quo”) and pose

URN)=U(a,Ry)={z € A, zR;aVi€ N}

for a profile Ry .
It is easy to understand that this SCC is monotone.

(1.3.4) Example. Maskin correspondence. As above, fix a € A. One
readily checks that :

Par(Rn | U(RN)) = Par(Rn) NU(RN).

The correspondence M : LV = A, defined by this formula, is also monotone.
This follows from monotonicity of both Par and U and from the following
simple assertion :

(1.3.5) Lemma. The intersection and the union of monotone correspon-
dences yields monotone correspondences. B

Notice that the correspondence U(a,.) is obtained as the intersection of
the simpler correspondences U;(a) :

Ui(a,Rn) = {z € A, zR;a}.

Multi-valuedness is the principal drawback of the Pareto rule and even of
the Maskin rule. Therefore the following important question arises naturally:
how large is the class of monotone SCFs? We will assume that a SCF is
surjective, i.e. sovereign. It turns out the answer differs widely depending on
whether | A | is equal to two or larger than two. When | A |= 2, the set of
monotone SCFs is large. Mueller and Satterthwaite (1977) establish that this
set consists only of dictatorial SCFs when | A |> 2.

(1.3.6) Theorem (Mueller-Satterthwaite). Let f : LY = A be a
sovereign SCF and | A |> 3. If f is monotone, then f is dictatorial.

The remainder of this Section is devoted to proving this Theorem, inci-
dentally we examine the case | A |= 2.

First, we establish that a sovereign monotone SCF is efficient. More pre-
cisely, we prove the following lemma.

(1.3.7) Lemma. Let F' be a monotone SCC possessing the following prop-
erty: F(Ry) = {a} when an alternative a is in top position for all rankings
R;. Then F is efficient.

Proof of the lemma. Assume that F' is not efficient, i.e. assume a profile
Ry and two distinct alternatives x and y, such that zR;y, for all i € N, and
that y € F(Rn). Construct now, the profile Ry : Ry = (R; | {z,y}, *) where
z and y have been propped up with respect to Ry. Then Ry =<, R and
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by monotonicity y € F(R'y). On the other hand, # = max R}, for all i € N,
therefore F(RY) = {z}. Contradiction.ll

If an SCF f is sovereign then, for any a, there exists a profile Qn with
f(@QnN) = a. If profile Ry is such that the alternative a is in top position for
all rankings R;, then Qnx <, Ry and by monotonicity f(Ry) = a. Thus, by
Lemma (1.3.7), f is efficient. Therefore, without loss of generality, we can
assume f efficient.

(1.3.8) Now we start with a monotone efficient SCF f. Take an alterna-
tive z and a coalition K. Then all profiles of the form

T *
* T
K | K

are z-equivalent. Thus, by monotonicity, if the property f(Ry) = = obtains
for one of the profiles above, it does for all such profiles and in this case, we
say that the coalition K forces x. Denote by W (x) the set of all coalitions
forcing . W (z) possesses the following formal properties:

1. N € W(z) (this is a consequence of efficiency).

2.If K € W(z) and K C K' then K’ C W(z). This follows simply from
monotonicity.

The third important property is phrased in the following Lemma.

(1.3.9) Lemma. Let x and y be two distinct alternatives and K C N.
Then K € W(z) if and only if K = N\ K ¢ W(y).

Proof of the lemma. Suppose first that K € W (z), K € W (y) and consider
a profile Ry of the form :

e )
o RS

Then z = f(Rn) = y, contradiction.
Suppose now that K ¢ W(x), K ¢ W (y) and consider a profile Qn

RS
=N x 8 <

By Pareto optimality, f(Qn) € {z,y}. By symmetry, one can assume that
f(QN) = z. Take a new profile

N IERERS

T
)

*
K
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where = has been propped down in the preferences of all agents belonging
to coalition K. Since Qn =, Q', then y # f(Q'\). And since by Pareto
optimality f(Q') € Par(Q') = {z,y}, then f(Q') = = , which contradicts
the assumption K ¢ W(z). B

The number of elements in A did not intervene up to now. It is time to
separate the cases | A |=2and | A |> 2.

(1.3.10) A Two Alternatives Set-up. In this case, we can say nothing
more about W than properties 1, 2 and Lemma (1.3.9). In fact, take any set
W C 2V satisfying properties 1 and 2 and define the SCF

foL{{a,y)N = {z,y}

by the explicit formula: f(Ry) = z if a coalition {i € N,z = max R;} belongs
to W, and f(Rn) = y otherwise.

Property 2 implies that the rule will be monotone.

If we are interested in neutral SCF's, the collection of ”winning” coalitions
W has to satisfy the following condition:

3. K € W if and only if K¢ W.

The set of coalitions W C 2V such that properties 1,2 obtain is called
sometimes a simple game. If in addition property 3 obtains, then this set is
called a mazimal simple game or a magority family. This is a generalization of
the notion of simple majority, where we say that a coalition wins if it includes
more than half of all agents (] NV | is supposed to be odd).

These structures appeared long ago both in game theory and social choice
theory. Von Neumann and Morgenstern (1945) already undertook the de-
scribing of such structures; they noted that not all majority families are of
the weighted majority type. Monjardet (1978) (and before him, the logician
E.Post (1941)) was able to give the following nice description of all major-
ity families. He remarked that there is a ternary operation, which he calls
‘median’,

m(W,W' W")y=WnWHuW nw"yuWwW"nw),

such that for any three majority families W, W' W' the median yields a new
majority family m(W, W', W"). Monjardet theorem states that any majority
family can be constructed by starting from a set of dictatorial families (when
W consists of all coalitions containing dictator ¢ ) and applying to it several
times the median operation. In the sequel, we use the following formal asser-
tion about majority families. A family W C 2%, satisfying properties 1 and
2, is called a filter if the following condition holds:
4. K, K' e Wthen KNK' e W.

(1.3.11) Lemma. A family W C 2N satisfying properties 1-4 is dictato-
rial.
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A family W is dictatorial if W is a maximal filter (or a ultrafilter); that
is W ={K CN, iy € K}, where i is a "dictator”. Of course, it is crucial
that N be finite here. The proof of Lemma (1.3.11) goes as follows. Consider
the intersection C' of all coalitions in W. The coalition C' is an element of W
by virtue of property 4 and therefore is the least winning coalition. By the
properties 1 and 3, C' is non-empty. Let ¢ € C. Since coalition C\{i} does
not belong to W, then by property 3 its complement C' U {i} belongs to W
and must contain C, i.e. {i} € C. Thus W consists of all coalitions containing
”dictator” . B

(1.3.12) The | A |> 2 Set-up. Recall that above, given a monotone SCF
f, we associated to every alternative x € A, the set W (x) of coalitions forcing
x and proved properties 1-3. When | A |> 3, we end up with two additional
properties. The first one is almost obvious : W (z) does not depend on z, for
all z € A (and we write simply W).

Indeed, we show that W (z) = W(y) for any two alternatives z and y. To
this end, we take a third alternative z different from z and y. Let K € W (x);
then by Lemma 3 K ¢ W(z) and by the same Lemma, K € W(y). We get
W(z) C W(y) and by symmetry, the converse inclusion obtains.

In particular, we note that the rule f is neutral. The second property
generalizes Lemma (3.9).

(1.3.13) Lemma. Let N = K; U K> LUl K3 be a partition of N into three
disjoint coalitions K;,i = 1,2,3. Then one of the coalitions K; belongs to W.

Proof. We take three different alternatives z,y, z and a profile Ry

x Yy z
Yy z T
z x Y
* * *

| Ki [ K2 [ K |

Efficiency implies f(Rn) € {z,y,z}. Assume f(Ry) = z. We claim then that
K, e W(ZE) =W.

Exchange the positions of y and z in the preferences of all members be-
longing to coalition K, this yields a profile Ry

T z z
Y Yy z
z x Yy
* * *

| Ko [ Ko [ Ky |

Since the position of # remaining unchanged (i.e. Rl =, Ry ), monotonicity
of f implies f(R%) = z. From the other side, if Ky ¢ W then by lemma



1.4 Social Choice Mechanisms 25

(1.3.9) K, UK3 € W and thus (by monotonicity) f(Rj) = z. Contradiction.
Therefore K1 € W. R

The Mueller-Satterthwaite theorem comes out now quite easily. Let C be
a minimal (in the sense of inclusion) coalition from W and ¢ € C. Suppose
that C # {i}. Then, C' being minimal in W, coalitions {i} and C \ {i} do
not belong to W nor does the coalition C' (Lemma (1.3.9)). This contradicts
Lemma (1.3.13). Thus C' = {i}. If K 5 i then K € W by monotonicity of W.
|

The main lesson from this theorem is that one cannot avoid multi-valued
SCCs. Moreover, assume we want all together to work with monotone SCCs,
universal environments and consider set-ups with more than two alterna-
tives, then it states that we have to allow for multiplicity of choices for some
strongly conflicting profiles. The proviso about universal environment is cru-
cial; in effect, we shall see later on that there exists monotone SCCs for cer-
tain restricted classes of profiles (roughly speaking when a Condorcet winner
obtains).

1.4 Social Choice Mechanisms

(1.4.1) Until 1973, social choice theory, implicitly or explicitly, adopted a non
strategic viewpoint. Either participants revealed truthfully their preferences,
or it was simply assumed that the preferences were known. The previously
mentioned properties of SCCs make sense only in this set-up. Consider for
instance efficiency, then it can be shown that an efficient rule may yield a
non Pareto optimal outcome if agents behave strategically. Take the following
example : two agents (or for the matter two distinct groups of homogeneous
agents, more or less equal in size) and their preference profile Ry 5y :

e i I =)
S~ N R

2

We use the Borda rule defined in Example (1.2.5). For this profile, either x or
y has to be a winning alternative, because x and y collect the largest number
(equal to 7) of points. In order to decrease the winning chances of y and
increase the winning chances of x, the first agent may claim her preference
to be Rf = (z = z = t = y) instead of R;. Agent 2 similarly might declare
R5; = (y » z > t > ). Therefore, for this new profile R}, alternatives z
and y collect 5 points each and open the way to alternative z, which collects
6 points. But alternative z is not efficient with respect to the true profile of
preferences Ry !

This example was meant only to emphasize the difficulties arising when
agents behave strategically. It should convince the reader of the necessity of
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both other approaches and methods of solving the problem. This is the aim
of the theory of social choice mechanisms; it is motivated by the possibility
of strategic behaviour.

(1.4.2) Definitions. A social choice mechanism (or mechanism) is simply
and only a game rule; the aims of players are not specified. More formally,
given N and A, a mechanism (or a game form) consists in a family of subsets
(S;,i € N) and a mapping,

T H S; — A.
ieN
The elements of S; are called the messages or strategies of agent i € N. The
mapping 7 is called an outcome function.

The mechanism is articulated as follows: first agents prompt messages
s; € S;, then these messages are gathered in a strategy profile sy =
(81,-.,8n) € S1 X ...x S, = Sy, and finally the mechanism yields an outcome
m(sn) € A.

Any social choice function f : LV — A can be viewed as a mechanism
whose strategies are preferences, or here linear orders, on A. We call such
mechanisms direct mechanisms. Preferences play a double role in these mech-
anisms: they reflect the aims of agents and serve as means to full-fil them. If
we admit that aims and means might differ, then messages shouldn’t be nec-
essarily specified as linear orders. In fact, we can use anything as a message
as long as both the list of possible messages is clearly outlined and the out-
come function is known to all participants. Therefore each participant knows
where this or that message profile might lead to.

Our not concentrating on direct mechanisms solely provides for extended
and new possibilities to conceive mechanisms, as for example in the king-
maker mechanism. Consider a group of agents. The first agent - the king-
maker - chooses a ”king” among the remaining participants: this ” king”
announces some alternative, which will be outcome. Of course, this is not yet
strictly speaking a mechanism. We would really then need to specify both
the strategies of agents and the outcome function. Even then, there are many
possible available specifications. Here is one. Let the set S; = N\{1} and for
the remaining agents S; = A. The mapping 7 is given by :

(81, ey Sn) = Ssy -

A mechanism really can be viewed somehow as an instrument which par-
ticipants give life to by their actions. The mysterious part of how the mech-
anism operates lies in the actions of agents, in their behaviour, in the choice
of strategies s;. Of course, the selecting of a mechanism step is also an im-
portant aspect of the whole issue. An imperfect and coarse mechanism can
bring to nought the efforts of the most skillful agent, whereas a good one will
serve any kind of agent’s purpose, even the less experienced. The primary
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focus of this book is the examine the impact of a mechanism’s structure on
social choice.

As we mentioned in the introduction, a mechanism 7 : [[,cn Si — A4
transforms the problem of choosing an element from A into the problem of
choosing an element from Sx. Where do we improve here? Well, now agent
i is totally free to choose any element in the set S; and this is just the
main idea of a mechanism - to untie choices of agents, to reduce the social
choice problem to individual choices. This simplification is however somehow
illusory. In effect, the outcome still depends upon joint actions, upon the
choices of all agents.

What strategies s} will the agents choose? This really depends on their
preferences R; in the first place. In effect, as soon as we supplement a mech-
anism 7 : [[;,cn Si — A with a preference profile Ry, we obtain a game
G(m, Ry) in the usual sense. Note that ”gains” are neither evaluated in ”mon-
etary units” nor in real numbers here. But this is un-essential. Thus, having
fixed a profile Ry, we enter in the realm of game theory and thereby we
expect to be instructed about the behaviour of agents. But we wait in vain
for game theory provides us with many too many an answer. In short, this is
because agents’ behaviour is not only determined by their preferences R; but
also by many additional things such as : information about the mechanism,
about the preferences and strategies of the other agents, ability to conduct
negotiations, to form coalitions, to agree upon strategies and to threaten,
ability to collect themselves, to put themselves in the place of other agents,
to figure out the knowledge of other agents and their strategic abilities, and
so on to infinity.

Of course, even if these things aren’t always stipulated explicitly, one
should try to take them into account. However, we shall not explore the wild
territories of human and social psychology here, rather we make the following
compromission. We view preference profiles Ry as the main factor influencing
message formation s; and assume that all the rest is clad (hidden) within
the ”behaviour concept”, which is formalized by an equilibrium concept (or
solution of a game).

(1.4.3) Solution Concept. The equilibrium approach (in games or in
more general settings) originates in a refusal to state or to predict what agents
would do, which strategies (s}) they might choose and what the outcome
m(sy) of the game would be. Instead it formulates some conditions for which
a strategic profile s}, might be considered stable and might be realized as
an equilibrium. These conditions usually imply that agents have exhausted
their opportunities for a better outcome. The solution concept neither tells us
what happens outside equilibrium, nor does it inform us on which equilibrium
will be selected or whether any equilibrium would be selected at all. In many
cases, however, the emphasis bears on the issue of existence of equilibrium,
maybe simply because existence provides us with a slight hope to actually
do some theory.
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Game theory has elaborated many solution concepts, see Moulin (1985)
or Myerson (1991), Harsanyi and Selten (1988). The most famous and the
most broadly used concept is of course that of Nash equilibrium. But there are
many other concepts, for instance, that of sophisticated equilibria, dominant-
strategy equilibria, coalitional equilibria, core etc. We shall discuss some of
these concepts later on, but meanwhile we pursue the course of our general
considerations. An equilibrium concept E picks out a set of ”equilibrium”
situations E(m, Ry) C Sy = [[;cn Si for a profile Ry. This yields a corre-
spondence

E(n): LY = Sy.

The set of equilibrium outcomes, is the image of the set E(w, Ry) by the
mapping 7 : Sy — A. This builds up a new correspondence

F =n(E(r,.)): LN = A.

We represent it with a commutative diagram, see Fig. 1.

Sy ——— A

N

Fig. 1

The correspondence F' = w(E(mw,.)) is said to be E—implemented by the
mechanism 7. Moreover, to ensure that F' be a SCC, we should check that
the set E(m, Ry) is not empty for every preference profile Ry € LY. In this
case, the mechanism 7 is called E— consistent.

(1.4.4) Environment. A consistent mechanism yields an ”equilibrium”
outcome for every preference profile Ry. However, even if the set E(m, Ry)
might happen to be empty for some profiles, there may be a subset of the set
of profiles for which it is not empty. An environment is a subset D C L(A)~
(the environment L(A)Y is called universal). A priori, D is any arbitrary
subset of L(A)N, but usually it is a Cartesian product x;D;, where D; is
a set of admissible individual preferences. Restricted environments may be
of interest either when agents’ preferences are not arbitrary and belong to
a set given a priori or when the preferences of distinct agents are inter-
dependent. This arises usually when the set of alternatives A (or the group
N) possesses an additional structure, with which the preferences of agents
should be compatible. The following examples show how additional structure
and compatibility interact.

1. In economics, the set of alternatives A usually figures bundles of goods
and the classroom set-up assumes ” that the more goods the better”. In this
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case, there is an a priori structure on the set A, namely a partial order > .
Remark then that individual preferences R; have to be compatible with this
order in the sense that >C R;. Therefore, not all preferences are admissible.

Consider a somewhat close situation. Assume there is a worst element
a € A. Then we say that preferences R; are admissible here if min R; = a.
The existence of such an element might help to agents to reach an agreement.

2. The set A may have a natural topological structure (in such case A is
usually infinite). Then a natural compatibility condition might be continuity
of preferences R; (for example, assuming R; is closed as a subset of A x A).

3. The set A may have a convex structure. A compatibility conditions
might be that preferences be convex in the sense that a mixture of two alter-
natives is not worse than one of them. This defines a convex environment.

There is an interesting variation of this idea. Assume that we wish to
extend a preference order, given on an initial set A, to the set 24 of all
subsets of alternatives. Then a natural requirement for extension is that any
subset X C A is not worse than the worst element of X, i.e. minR | X
(Kannai and Peleg (1984); Danilov and Sotskov (1987)).

4. Tt may occur that the set A has a natural metric p. Then one might
associate to every a € A the preference on A, defined by the utility function
uq(.) = —p(.,a), where the closer an alternative z to the ”bliss point” a
the better it is valued. This set-up is related somehow to that of single-
peakedness.

5. Single-peaked or unimodal preferences are very popular in the social
choice literature. They are indeed particular cases of 3 and 4. Assume the set
A has a tree structure, i.e. A is a connected graph without cycles. For any
two x,y € A, we denote by [z, y] the minimal connected subgraph containing
x and y. A preference R is said to be single-peaked if aRmin R | {z,y} for
any a € [z,y]. For more details, refer to Demange (1982) or Danilov (1994).

6. Many economic settings do not to fit in the frameworks set-above and
therefore it is not possible to devise the previously devised restrictions on pref-
erences . Of course in these settings, preferences are rarely arbitrary. However
it is often quite difficult to describe appropriately the class of admissible pref-
erences. This is why we shall focus on general social choice mechanisms here.
A few economic applications of social choice theory appear in Sections 4 and
5 of Chapter 3.

The set of consistent mechanisms is larger the narrower the environment.
But of course, mechanisms which are consistent for broad environments are
more interesting. We shall focus in our book with universal environments, at
least most of the times. And when possible, we shall describe the structure
of universally consistent mechanisms. In Chapter 3 however, we work with a
restricted environment while investigating dominant equilibrium concepts.

Once we have a consistent mechanism, we can try to mesure how well it
performs. Do the implemented equilibrium outcomes have ”nice” properties?
It turns out that, for many interesting equilibrium concepts, the implemented
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SCC has automatically nice properties such as monotonicity. Thus we may
now add implementability to the list of desirable properties of a SCC for we
feel that probably only "reasonable” SCCs may be implemented by consistent
mechanisms.

The following four chapters examine separately four most important game
solution concepts: Nash equilibrium, equilibrium in dominant strategies , core
or ”threat ” equilibrium, and strong (coalitional) equilibrium. For each con-
cept, we investigate the associated consistent mechanisms and implemented
SCCs. We do not elaborate on the sophisticated equilibrium concept, because
we think it is both too refined and unrealistic. The interested reader should
consult Moulin (1983), Golberg and Gurvich (1986). We neither account for
the Maxmin concept because it has not been investigated widely.

1.5 Effectivity Functions and Blockings

(1.5.1) When we analyze a social choice mechanism, we are interested in
evaluating (at least coarsely) the power of both agents and coalitions, i.e. their
ability to impose outcomes through a mechanism. Of course, this ”power”
is not necessarily expressed as a real number (though sometimes it can be
reduced to a number). It expresses the capacity of an agent or a coalition
to force some outcomes, to monitor them into some subset(s) of alternatives
or equivalently to block them from the complementary subset(s). Take, for
example, a dictatorial SCF. Obviously, the division of power is such that all
the power lies in the hands of the dictator (with respect to the choice of an
alternative in A), whereas the remaining agents are powerless (they are unable
to influence outcome). Now take the simple majority rule (Example (1.2.4));
in contrast here, any coalition including more than a half of all agents has
practically full-powers. Therefore such a coalition can enforce any decision
provided that its members have reached an internal agreement. For other
mechanisms, a coalition’s power might take any intermediate value between
”full-power” and ”no-power”.

A coalition forces a subset X C A (or is effective on X), if it is able to drive
outcomes into the subset X. It blocks a subset Y, if it is able to avoid outcome
from ”hitting” into the subset Y. Thus, to enforce X is equivalent to blocking
X. Depending on circumstances, we shall use either terms. However to avoid
cumbersome repetitions, definitions will be stated in most cases in terms of
blocking; the stating in terms of effectivity functions is straightforward.

(1.5.2) Definition. Let 7 : [[;. 5 Si — A be a mechanism. A coalition
K C N blocks a subset X C A (or forces a supplementary subset X = A\ X)
through mechanism 7, if there exists a coalitional strategy sk € Sk such that,
for any strategy s € S of the complementary coalition K, 7(sk, s77) ¢ X.
We write for simplicity KB, X.
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It is easy to check that the blocking relation® B, (between 2V and 24),
generated by the mechanism 7, has three fundamental properties:

B1. If K blocks X, K’ D> K and X' C X, then K’ blocks X".

B2. If K blocks X, K’ blocks X’ and K N K' = (), then coalition K U K'
blocks X U X".

B3. Every coalition blocks the empty set; no coalition blocks A.

Property Bl is called monotonicity with respect to participants and al-
ternatives. Property B2 is called superadditivity: two disjoint coalitions which
decide to unite, may achieve together no less than separately. Property B3
provides some sort of ’boundary’ condition; it states that some outcome has
to occur and that the set A exhausts all possible outcomes. Note that if the
mapping 7w : Sy — A is surjective, then B, is sovereign in the following
sense :

B4. The total coalition IV blocks any subset X C A, X # A.

(1.5.3) Definition. A binary relation B between sets 2V and 24 is called
a blocking if it satisfies axioms B1-B3.

The following basic property of blockings derives from axioms B1-B3:

assume that K1, ..., K, be pairwise disjoint coalitions, blocking respec-
tively the sets Xy, ..., Xpp; then X7 U ..U X, # A.

In particular, note that if K blocks X then K does not block X.

Theoretically a blocking need not to derive only from mechanisms as
in definition 1. In fact, if some agents have the necessary resources to the
realization of some projects or some a priori rights then the opportunity to
"block” some alternatives may arise naturally. And in these more general
cases, the emerging ”blocking relation” might not satisfy conditions B1-B3.
In particular, the ”blocking” may be self-conflicting and allow for no outcome.
Consider the following broad way of constructing a blocking.

(1.5.4) Definition. Let 7 : Sy — A be a mechanism. A coalition K
B—blocks a subset X through the mechanism = if for any strategy sz of the
complementary coalition K, there exists s € Sk such that 7(sk, sz) ¢ X.

In general, 3-blockings B? are not superadditive.

(1.5.5) Example. Roulette. An agent’s i message is a pair (k;, a;), where
k; is a integer number from 1 to | N |= n and a; is an alternative. An outcome
is determined by the formula

ﬂ-((klaal)a sy (knaan)) = a3 k; mod n-

% One can say that a blocking is to a mechanism what a game in characteristic form
is to a game in normal form. In blockings, we focus as well on the opportunities
of coalitions rather than on the concrete means of their realization.
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The agents select the agent k (the ”king”) whose alternative will ultimately

wins according to the rule k£ = X'k; modulo n. In this mechanism, one sees

readily that every agent S—forces any alternative. In effect, any agent i can

practically elicit himself as the "king” provided he selects suitable a k;, given

the k; of other agents j, j # i. Of course, this ”blocking” is not superadditive.
We present now another possible construction of a ”blocking”.

(1.5.6) Definition. Let F : LY — A be a correspondence. A coalition
K blocks a subset X C A through F' (denoted by K BpX) if there exists a
profile Rx € L such that

F(Rg,*)NX = 0.

Axiom B3 is violated here when F' can have empty values. However, if F' is
a SCC (i.e. nonempty-valued) the relation B is a fully-fledged blocking and
satisfies axioms B1-B3.

We give two more examples of blockings.

(1.5.7) Example. We remind that a simple game is a pair (N, W), where
W C 2V is a set of ”winning” coalitions, satisfying two conditions:

a)if K € W and K C K’ then K' € W;

b) if K € W then K ¢ W. We denote by By a blocking associated to the
simple game by the formula

KBwX & either [K € W and X # A] or [X = 0)].

In other words, winning coalitions are almighty whereas loosing coalitions
are helpless. The blocking Byy satisfies axioms B1-B3 and B4 if N € W.

(1.5.8) Example. Consider the following ”veto” function

v:{0,1,....,n=| N |} > Z,.

Define B, as follows: any coalition consisting of k& members blocks any set
of alternatives whose size is inferior or equal to v(k). B, is a fully-fledged
blocking if the two conditions are fulfilled:

1) v(n) < |Al,

2)if k+ k' <n then v(k + k') > v(k) + v(k').

Veto-blockings are anonymous (equal with respect to agents) and neutral
(equal with respect to alternatives). Moreover, any anonymous and neutral
blocking is a veto-blocking.

We saw that blockings are interesting because they allow us to evaluate
mechanisms and force of agents. Blocking are also interesting because starting
from any blocking, one might construct many distinct correspondences and
social choice mechanisms. Therefore in some sense blockings can be viewed
as "premechanisms”. We now give a few constructive examples. Let B be a
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blocking. An alternative a is called individually rational for the profile Ry
if no agent i blocks the set L(a, R;). We denote by IC(B, Ry) the set of all
individually rational alternatives for the profile Ry .

(1.5.9) Lemma. The set IC(B, Ry) is never empty.

This is readily seen if we consider a more explicit description of IC' (B, Ry).
Let Z; be the largest "lower” set, blocked by agent ¢, in linear order R;. Then
IC(B,Ry) is the complement of U;cnZ; (which is not equal to A by the
basic property of blockings).

The correspondence IC plays an important role in Chapter 2 when we
study Nash equilibria. In Chapter 4, we investigate in details the core corre-
spondence C(B,.) associated to a blocking B.

(1.5.10) Composite Mechanisms. We show now how a mechanism
can be constructed from a given blocking. However first, we have to describe
a simple and useful method of constructing complex or refined mechanisms
from simpler or coarser mechanisms. Assume we have the following ’coarse’
mechanism

c:Sy— J

with values in the auxiliary set J. Moreover assume that for every j € J, we
define a terminal mechanism with values in the set A

pj: HTZ.(J) — A.
i
Then one forms the composite mechanism

U*p:H(SixTi)—)A

iEN
where T; = HjEJTi(j) and for sy € Sy, ty € Ty

(0% P) (5N, tN) = poon) (ER™)).
In other words, given strategies sy, the ”coarse” mechanism ¢ associates a
number j = o(sn), which selects the terminal mechanism p;, which in turn

selects a final outcome p; (tS\Jr))-

The construction is in fact quite straightforward, even if the formal de-
scription appears cumbersome. It is essentially similar to that found in ex-
tensive game forms settings or in two-stage games settings. Often things are
as follows. We first delimit some natural subset to which the desired out-
come should belong. Then a final choice is made from this subset by means
of an additional mechanism. This additional mechanism in turn takes often
enough the form of the roulette mechanism described in Example (5.5). Inci-
dentally, note that the roulette mechanism can be decomposed into simpler
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parts. First one chooses a "king”; then this king acting as a dictator chooses
a final alternative. In this sense, the roulette mechanism is similar in spirit
to the kingmaker mechanism.

We go back to the issue of constructing an associated mechanism from
blocking B. We start with a ”coarse” mechanism. Every agent ¢ announces
a subset X; C A. Therefore the set of strategies of agent i, S; = 2. Agents
are then partitioned into groups of ”similar” agents : two agents belong to
the same group if they happened to send the same message. Denote these
groups by respectively K, ..., K. The agents in K,’s message is denoted X,..
A coalition K, is said to be acting if it blocks X,.. Let X be the union of X,
for all acting coalitions K,.. Finally denote by X the maximal set blocked
by the empty coalition. We pose

F(Xy) = A\(X. U Xp).

The basic property of blockings implies that F(Xy) is a nonempty set.
Clearly any terminal mechanism should take its values in the set F/(Xx). The
blocking B, which emerges from this process is stronger than B (in the sense
B C B;) whatever the terminal mechanisms considered. Indeed, assume that
KBX. Now if all members of the coalition K announce X, then the reader
will check that final outcome does not belong to X and therefore K B, X.

We consider here the two following types of terminal mechanisms. The
first type of terminal mechanism we look at, given a situation Xy, is the
roulette mechanism with values in the set F(Xxn). We denote the resulting
composite canonical mechanism by 7. We claim that the blocking B, then
essentially coincides with the initial blocking B. More exactly, if a coalition
K is different from N and KBX then KB,,X. In fact, given any action of
coalition K, all members of the complementary coalition K may send the
message: “empty set” and then choose an outcome from X, provided they
selected one of them as a ”king”. As regarding the opportunities open to
coalition N, it is easy to see that it can select any element from A* = A\ Xj
as an outcome. We shape this short proof further.

We shall say that a mechanism 7 generates a blocking B if B = B;. In the
sequel, one of the typical issues we shall address is whether a given blocking is
generated by a mechanism possessing prescribed additional properties such as
consistency, coalitional stability and so on. We shall elaborate on this mainly
in Chapters 2 and 5. For the time being, we only ask whether there exists any
mechanism such that it generates a given blocking? Obviously any blocking
of the type B, satisfies the following property:

B3*. Coalition N forces any set which is not blocked by the empty coalition.

Note that B3* is stronger than B3. It turns out the inverse is also true.

(1.5.11) Proposition. A blocking B is generated by a mechanism if and
only if it satisfies property B3*.
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Indeed, as proved above, if B satisfies B3* then it is generated by its
canonical mechanism 5.1

We turn now to the second type of terminal mechanisms. We pick an
agent ig and we define the terminal mechanism, given a situation Xy, as
dictatorship of the agent io on the set F/(Xn). We denote by B’ the blocking
generated by this mechanism. We previously remarked that B C B'. B’ may
be described explicitly:

KB'X if either KBX, or KBX and iy € K.

The blocking B’ satisfies a maximality property which we shall encounter
quite often in the sequel.

(1.5.12) Definition. A blocking is called mazimal if it is a maximal
element in the set of all blockings ordered by inclusion.

In other words, if a blocking is maximal then it is not possible to
strengthen any coalition without violating any one of the properties B1-B3.
This definition explains the word 'maximal’, however it is not very convenient
to use and to work with. The following simple maximality criterion can be
used in place of it.

(1.5.13) Proposition. A blocking B is mazimal if and only if the fol-
lowing property holds: KBX = KBX.

Proof. We show that this property implies maximality. Let B C B’ and
KB'X. Then KB'X hence KBX and therefore KBX. So B = B'.

Converse. Let B be maximal. Assume K BX. We show that KBX. To do
so, we pick an agent ig outside coalition K and define B’ to be the block-
ing constructed above. By maximality of B, the equality B = B’ obtains.
Moreover the explicit description of B’ implies that K B'X, whence KBX.H

(1.5.14) Corollary. Every mazimal blocking is generated by a mecha-
nism.

1.A1 Arrow’s Impossibility Theorem

(1.A1.1) Preference aggregation. Classical social choice theory focused
upon the preference aggregation issue, which can be considered as an inter-
mediary stage of social choice. We devote little space to this issue, since it
is addressed everywhere in the literature (Arrow (1951), Sen (1970, 1986),
Fishburn (1973), Mirkin (1974), Danilov (1983)). Aggregating preferences
consists, given a set of alternatives A, in constructing the preference of a
social group R = (R ) based on individual preferences (and more precisely
on a preference profile Ry ). With such a preference R it is then easy to solve
any social choice problem in A.
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We noted that the constructing of many rules of social choice involves the
specifying of a group utility. For example, take the Borda rule. In this rule,
we constructed the number u(z, Ry), and this number can be regarded as a
group utility.

Therefore aggregating preferences amounts to dealing with the following
kind of mappings

@ : LAY = L(A).

Of course, this is only one way to do it. In fact, one can take, instead
of L, any other class of binary relations (weak orders, transitive relations,
tournaments and so on). We shan’t give here an exhaustive overview of this
domain of social choice theory (the interested reader should refer to surveys).
However, we shall consider a typical example, in order to give the reader a
flavor of what are the issues involved, the possible answers and the reasonings.
We assume here that | A |> 3.

In order to be a ”reasonable” rule of preference aggregation, the mapping
& should satisfy some requirements. Following Arrow, we impose two con-
ditions. The first (Unanimity or Pareto Condition): if preferences R; of all
agents are the same and equal R then #(Ry) = R, is practically indisputable.
The second (Independence of Irrelevant Alternatives) goes as follows: a group
preference ¢(R ) on any pair of alternatives {z,y} depends only on the pref-
erences of agents R; on the same pair of alternatives. One can either agree or
disagree with this requirement (for example, the Borda rule does not satisfy
it). However it sounds quite innocuous. Therefore it is surprising that only
dictatorial rules of preference aggregation (i.e. #(Ryx) = R;, for a given agent
ig) satisfy both these conditions.

This is the content of the well-known Impossibility (or Possibility) theo-
rem by Arrow (1951), a milestone of modern social choice theory. Its proof is
similar to that of the Mueller and Satterthwaite theorem (1.3.6). We sketch
two alternatives ways of proving Arrow’s theorem. The first way is direct.

(1.A1.2) We denote by W(z,y) the set of coalitions K such that z =g y
(ie. z >; y Vi € K) implies > y (where == &((>;)ien). For example,
N € W(z,y) by unanimity and ITA. Let W = U, ,W(z,y) and C be a
minimal coalition in W belonging to some W (z,y). We claim that C' consists
of a unique agent. Indeed, let i € C' and 2z be an alternative different from z
and y. We consider the following profile Ry (compare with profile Ry in the
proof of lemma (1.3.13):

E T RS I~ )
Clx = 8w
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Since  =¢ y and C' € W(x,y) then = y. Since z > y only for the
participants of coalition C\{i} and C'\ {i} ¢ W (z,y) then relation z > y is
not fulfilled, hence y > z is true. By transitivity, z > z. However, as x > z
holds only for agent i, {i} € W(z, 2) for any alternative z # z.

We need to show that agent ¢ is decisive on any pair. Take two alternatives
y and z , both different from z, and consider a profile @ n:

B RS IR RN
* B n
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Then for »= #(Rn) we have & > z (since {i} belongs to W(z,z) and
y > « by unanimity). So y = z,{i} € W(y, z) and i is a dictator.l

(1.A1.3) The second proof rests on a stronger monotonicity condition
than the ITA condition, albeit the former is derived from both ITA and una-
nimity (see for example Danilov (1983)). The proof goes as follows. Let Ry
and Ry be two profiles, z and y be two alternatives. The monotonicity of
¢ means that if z®(Ry)y and if, for any ¢ € N, zR;y implies R}y, then
z®P(R/y)y. Under this condition the proof boils down to Theorem (3.6). For
this purpose, we define the SCF f by the formula f(Ry) = max®(Ry). By
virtue of the unanimity condition, f is sovereign, and by monotonicity of @,
the SCF f is monotone as well. Thus, there exists a dictator, i.e. an agent ig
such that f(Ry) = max R;,. It is easy to understand that #(Ry) = R;,, i.e.
ip 1s an arrovian dictator.

1.A2 Non-manipulable SCFs

(1.A2.1) We pointed to the issue of truthful preference revelation in the
Introduction while we dwelled upon possible different desirable properties of
SCFs. The question is now will agents reveal truthfully their preferences? It
is difficult to say what agents will do. And therefore what we should ask is
whether it is profitable for them to reveal truthfully their preferences, whether
a SCF will cause them to lie, to distort their preferences, to manipulate them
in an attempt to get a better outcome? To start with, we present a few
concrete examples.

(1.A2.2) Example. Let there be a unique agent and a SCF determined
as follows: f(R) = min R (anti-dictatorship).

Clearly if the agent knows the principle of choice, he will declare instead
of his truthful preference R the opposite preference R~'. The rule is then
consciously distorted and perverted.
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Let us consider a more "reasonable” rule.

(1.A2.3) Example. There are three agents and three alternatives,
A = {z,y,z}. The rule acts as follows: we compare first alternatives z,y
and determine a winning alternative which is then compared with z. We
consider the following profile Ry :
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In the first stage z wins over y, in the second stage z wins over x, thus
f(RN) = z. However agent 1 might notice that if he shoves an allegated
preference R = (y = = > z) instead of his true Ri—(z > y = z), then the
outcome f(R}, Rz, R3) = y will be better for him than z. Why would he then
reveal R; and therefore harm himself? Moralists may tell him that it is not
good to deceive in general. But then our agent might object to this (as in
Example (1.A2.2) that the social outcome is determined through a bad SCF
and that it would be better indeed to spend some more time and efforts to
devise a more reasonable collective choice mechanism, which in turn would
not cause him to lie.

(1.A2.4) Example. Again there are three agents and three alternatives.
The winning alternative here is that which has been listed at the top of
rankings by a majority of agents. Assume that there is no such winning
alternative, then the outcome is determined by the first agent’s preferred
alternative. Take again the profile Ry figuring in Example (1.A2.3). Here
f(Rn) = . However agent 2 replacing Ry by R, = (z > y > x) may obtain
outcome z, which he prefers to z.

Do these cheating attempts occur just by chance? Are we able to exhibit
SCFs which do not have the drawbacks? Before discussing these issues, we
give the following definition.

(1.A2.5) Definition. A SCF f : LY — A is non-manipulable (or
strategy-proof, i.e. immune to strategic behavior) if for any profile Ry € LY,
any agent 4, and any order R} € L the following relations hold,

F(RN)Ri f (R}, Ryyi)-

In other words, these relations state that truth is the most profitable mes-
sage for every agent. More exactly, no agent i ever profits from any deviation
from his truthful preference R;. At least two reasons explain the desirability
of non-manipulability. First non-manipulability simplifies the life of agents,
they need not torture themselves in order to come up with a best message.
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The best message is obvious (it is the truthful message) and moreover inde-
pendent of the messages of other agents. Second non-manipulability ensures
the social planner that the chosen SCF yields the outcome f(Ry) when the
profile is Ry.

However the mere formulating of a desirable requirement, albeit im-
portant, just does half of the business. The main issue remains: do non-
manipulable SCFs exist, how many of them are there and can we describe
them? The answer is unfortunately not quite satisfactory- in fact, there are
very few of them. We establish the following fact.

(1.A2.6) Lemma. A SCF is non-manipulable if and only if it is mono-
tone.

Proof. Let f be non-manipulable and Ry, Ry be two profiles. Assume
that f(Rn) = a and Ry <, R\y. We have to show that f(R)) = a. Without
loss of generality, we can assume that R; = R;- for j # i so that only agent i
modified his preference. Pose b = f(R/y) . By non-manipulability, aR;b and
bR}a. Since R; <, R}, aR;b implies aR}b. Together with bR}a this yields
a="».

Conversely, let f be a monotone SCF, we have to check that

f(Ri, Rn\i)Ri f (R}, Rnvvi).

Since profile Ryy; will not play any role here, we can assume it is fixed and
not write it as an argument. Let f(R;) = a, f(R}) = b. Assume that a # b
and bR;a. We construct an auxiliary order R = (b > a > ...). Since R; <, R
then f(Rn) = a, since R} < R then (Ry) = b, which is in contradiction
with a # b. B

The following result proved by Gibbard (1973) and Satterthwaite (1975)
comes out as a consequence of both the previous Lemma and the Mueller-
Satterthwaite theorem. Barbera (1983) devised another proof of this theorem;
we sketch it in Chapter 3.

(1.A2.7) Theorem. Let f : LY — A be a sovereign non-manipulable
SCF and |A| > 3. Then f is dictatorial.

Note that Gibbard proved a somewhat more general result, which follows
as well from similar considerations. Let f : LYY — A be a non-manipulable
SCF. Then either f is duple (i.e. the image of f contains at most two alter-
natives) or f is unilateral (i.e. f(Rn) is determined solely by the preference
R; of dictator 7).

This is one of the principal results of social choice theory. If we use a non-
dictatorial SCF and if the real choice involves more than two alternatives,
then we inevitably come across a preference profile Ry and an agent ¢ which
profits from distorting his preference R;. However one shouldn’t dramatize:
few such profiles may occur (though we do not know exact assertions of
such type) and the allegedly profiting agent ¢ might not necessarily distort
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his preferences. Thus this somehow negative result does hamper the practice
of social choice and voting procedures. However from a theoretical point
of view, the matter is slightly more serious. This result implies that the
requirements on SCF turned out to be too strict and somewhat contradictory.
Non-dictatorial and non-manipulable SCFs exist no more than perpetuum
mobile. Therefore, we should relax somewhat our requirements and look for
means of retreat. The interest of this theorem is that its conditions indicate
the directions of retreat. We shall discuss three of these directions.

A first simple direction consist in restricting the set of alternatives such as
| A |= 2. In this case there is quite sufficient a number of ”nice” (for example,
almost anonymous) non-manipulable SCFs (see the case of two alternatives
(1.3.10)).

A second direction consists in restricting the environment. Indeed, for
instance in the single-peaked environment, one can find many interesting
non-manipulable SCFs. Section 3.2 will elaborate more thoroughly on these
issues.

The third direction consists in changing the solution concept, in accommo-
dating with manipulability provided we compensate manipulability by some
other 'nice’ properties. The fact that an agent might lie is not that much of
a problem. But the fact that he might not have a dominant strategy is more
of a problem, because then we don’t know what he would do, neither do we
know what other agents would do, nor do we know the outcome. The only
consistent decision in this case is to complement a SCF or, for the matter
an arbitrary social choice mechanism (it isn’t necessary to restrict ourselves
solely to direct mechanisms), with a suitable behavioral or equilibrium con-
cept. For instance, we might take the Nash equilibrium and we explore this
in the next chapter. An interesting and prospective direction is that pro-
posed by B.Peleg (1978) which considers the stronger concept of coalitional
equilibrium. We explore it in Chapter 5.

1.A3 Minimal Monotone SCCs

We saw in Section 1.3 that monotone SCCs might happen to be multi-valued
for some profiles. To what extent can one minimize such a multi-valuedness?
What is an ”almost single-valued” SCC? These questions lead us to the fol-
lowing notion.

(1.A3.1) Definition. A monotone SCC F is called minimal (by inclu-
sion), or simply minimal, or a MMSCC, if every monotone nonempty-valued
sub-correspondence G C F' coincides with F'.

In other words, a sub-correspondence G C F' is either non-monotone or
G(Ry) = 0 for some profile Ry . Of course, every monotone SCF is a MMSSC
but there are other MMSCCs. We establish now a criterion of minimality due
to Moulin (1983) and then we give a few examples of MMSCCs.
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(1.A3.2) Proposition. Let F' be a monotone SCC. The following asser-
tions are equivalent:

1. F is a minimal monotone SCC.

2. For any x € F(Rp) there ezists a profile Ry <, Rn such that F(RY) =
{z}.

One may say that F' is minimal if it is single-valued for sufficiently many
profiles. We now prove the proposition.

2. = 1. Let G C F be a monotone sub-correspondence of F' and x €
F(Rn). Pick a profile Ry satisfying 2. Then by monotonicity of G, = €
G(RN), thus G = F.

1. = 2. Assume a profile R, and an alternative z € F(R},) , satisfying

Ry =: Ry = F(Ry) # {2}

We construct then a new correspondence GG as follows :

[ F(Ry)\{z} if Ry <, Ry,
G(RN) = { FIEIRN) otﬁerwise.N

One can see readily that G C F, is non-empty valued and monotone: this
is in contradiction with the minimality property of F.H
Consider the following examples of MMSCCs.

(1.A3.3) Example. Maskin correspondence, see Example (1.3.4). The
Maskin correspondence is monotone; it is straightforward with the above-
given criterion. Let € F(Ry), i.e. « is a Pareto optimal alternative and
zR;a, for all i € N. If x = a, then F(Ry) = {z}. If  # a , then prop a up
in order to bring it just below x and leave all other alternatives’ positions
unchanged. The new profile R} is z-equivalent to Ry and F(R)y) = {z}.1

Moulin (1983), in his book, claims that for a given MMSCC F and z €
F(Ry) there exists a profile R which is z—equivalent to Ry and F(RYy) =
{z}. The example below shows that it is not quite true.

(1.A3.4) Example. A modified Borda rule. Let N = {1,2,3}, A =
{a,b,c}. We consider the following monotone variant of Borda rule F. We
value alternatives depending on their positions in the ranking of a definite
agent and this for each agent. An alternative figuring at the bottom receives
0 points, 1 point if it stands in the middle and 2 points if it figures at the top
of the ranking. Moreover agents are weighted : the first and the second agent
are given weight 2, whereas the third’s weight is 1. Thus for the profile Ry :
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the value of alternative @ is 2x2+4+2 x 141 x 0 = 6 points, of b is 2x1+ 2 X
2+ 1x1=7points and of cis 2x0+2 x 0+ 1 x 2 = 2 points. We pose

F(Rx) = {the set of alternatives whose number of points is > 6}.

For instance, here F(Ry) = {a,b}. The correspondence F' is non-empty
valued. Indeed,

1) all alternatives taken together collect 15 points;

2) one only of the alternatives collects an odd number of points: if it
figures in second position in the third agent’s ranking.

Obviously F is monotone. We modify the correspondence F' as follows,

if 1st and 2nd agents’ top-alternatives,
are different
() if 1st and 2nd agents’ top-alternative
is equal to x. #

F(Ry)
F(RN) =

In the # case, the profiles look as follow,

r | T | x*
* | x| ok
[t 2]3]

We check now F’s monotonicity. Assume for instance that a € F(Rn)
(thus a collects a number of points > 6 in Ry). Let Ry <, R (thus a
collects at least 6 points in R/ as well) and assume that a ¢ F(RY;). This
happens only if R/ has the form

* % 9

% 28
N * @8

[ tl2]3]

In this case, if we consider the previous profile Ry (such that Ry <, RYy),
then we cannot bring a into F/(Ry), which contradicts the assumption. Thus
F' is monotone.

To check minimality of this SCC one uses the minimality criterion. The
reader will sort out himself all the adequate profiles ( there are essentially
four different such profiles) and check the criterion. We now give an idea of
the argument of the proof. Take the following profile Ry :
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Here the set of outcomes F(Ry) = {a, b} since a and b collect 6 points each.
In order to reduce it to a, it is sufficient to select a R} ~, Rn where we
exchange b and ¢’s positions in the first agent’s ranking. Then F(RYy) = {a}.
Now to reduce that set to b, we take R, <, Ry where the third agent’s
ranking is modified as follows ¢ > a > b. Then alternatives a,b, ¢, collect
respectively 5, 6 , and 4 points, thus F(R/) = {b}. We see here that without
lowering alternative b, it is impossible to expel a, in the sense that there is
no profile Ry ~ Ry for which F(Ry) = {b}.

Propositions (4.2.7) and (4.2.10) of Sec. 4.2, Ch.4 present other exam-
ples of MMSCCs constructed from given blockings. We shall emphasize the
interest of this concept of MMSCCs in next chapter when we consider imple-
mentation issues.

Bibliographic Comments

The material presented in Sections 1.1 and 1.2 is rather classical. Weak and
linear orders are fairly common concepts which are presented in many stan-
dard textbooks. We recommend in particular Fishburn (1978), Kiruta et al.
(1980), and Mirkin (1973), Kreps (1988). These books also discuss relations
between preference and utility function. The approach to preferences through
rational choice functions goes back to Arrow’s seminal work (1951), further
developments can be found in Aizerman, Malishevsky (1981) or Kreps (1988).

The origins of SCCs are difficult to trace, but they figure implicitly in
the early works in social choice theory. However Arrow’s book launched a
series of investigations on preference aggregation rules (for historical details
see Lesina (1987), Sen (1970)). Incidentally the preference aggregation issue
and the SCC issue are closely related; Fishburn (1973) and Lesina (1987),
for instance, provide numerous examples of classical SCCs. Gibbard in his
1973 article makes an explicit use of the notion of SCF. He also introduces
in an explicit way the notion of a mechanism (albeit this concept had been
around for some time), denoted a game form, and proves the theorem about
manipulability. 1973 might therefore be marked as the year of birth of social
choice mechanisms theory. We recommend also a survey by Groves (1979).

The notion of monotonicity (under this or another denomination or vari-
ations) appeared somewhat long ago (see, for example, Polterovich (1973)).
Gradually it became one of the central notions of social choice theory (espe-
cially after Maskin’s (1979) seminal article) and Moulin (1983) or Peleg (1984)
devote to it an important space in their books. The Mueller-Satterthwaite
theorem (3.6) derives historically from the Gibbard-Satterthwaite theorem
(about manipulability, which in turn is based on Arrow theorem. Our pre-
sentation, in contrast, treats the Mueller-Satterthwaite theorem as the cen-
tral piece and derive all other theorems from it. The results on Nash-
implementability (Chapter 2) emphasize the importance of monotonicity with
respect to SCCs.
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The concept of forcing (or of effectivity function) was introduced in the
fundamental paper by Moulin, Peleg (1982). Incidentally, both this notion
and the notion of maximal blocking appear in Gurvich (1975) albeit under
other names. We shall discuss blockings and their applications more exten-
sively in Chapters 2, 4 and 5.



2. Nash-consistent Mechanisms

This chapter is devoted to Nash-consistent mechanisms, that is mechanisms
possessing Nash equilibria at every preference profile. In Section 2.1, we ex-
amine a few examples, then proceed to investigate blockings generated by
Nash-consistent mechanisms (Section 2.2). In Section 2.3, we show that the
correspondence of equilibrium outcomes exhibit a somewhat stronger prop-
erty than monotonicity, which is called strong monotonicity. In Section 2.4,
we describe Nash-implementable SCCs. In the more-than-two-agents case,
the class of Nash-implementable SCCs coincides with the class of strongly
monotone SCCs. The case of two agents is considered in Section 2.5. In Sec-
tion 2.6, we discuss acceptable mechanisms, that is consistent mechanisms
whose outcomes are Pareto optimal.

In Appendix 2.A we give a simple mechanism implementing Walrasian
equilibria.

2.1 Definitions and Examples

(2.1.1) This chapter is devoted to an application of the Nash equilibrium
concept (the most used in game theory) to social choice mechanisms.

Let m : [[;en Si = A be a mechanism and Ry be a preference profile. A
strategy profile sy = (s;,i € N) is a Nash equilibrium for the game G(mw, Ry )
if it satisfies the following individual optimality property: for each participant
i € N and any strategy s; € S; of this participant,

T(sn)Rim(si, 53 —4),

where s}, _; denotes the strategy profile (s},j # i). The preceding relation
can be rephrased as

(si,sn-;) € L(m(sy), Ri)-

The set of all Nash equilibria of a game G (7, Ry) is denoted NE(w, Ry). The
mechanism = is consistent (more precisely, Nash-consistent) if NE(m, Ry) is
non-empty for any preference profile Ry € L. For brevity, we shall simply
say equilibria when we mean Nash equilibria in this chapter.
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We start by a short discussion of the notion of (Nash) equilibrium. It is
based on two behavioural postulates. First it is assumed that if an avalaible
strategy s; to a participant ¢ improves upon the outcome with respect to
using a strategy s} (for a fixed s}3,_;), then the strategy s} will not be used.
This assumption is reasonable as long as participant ¢ can count on the non-
reaction of other participants to his deviating. However, in many cases it turns
out that this kind of expectation is both myopic and thoughtless. Second it is
assumed that if no deviation from the strategy s} improves upon the outcome
for a participant ¢, then he will use s} even if that strategy might seem
quite absurd. We shall frequently encounter such situations. Notwithstanding
these drawbacks of the Nash equilibrium concept, we use this concept and
investigate its consequences for mechanisms. We begin with a few concrete
examples of mechanisms.

(2.1.2) Example. Roulette. This mechanism was defined in Example
(1.5.5). The only important thing we are interested here is the following
property of the roulette mechanism: for any i € N, a € A and sy_; € Sy_;
there exists s; € S; such that 7(s;, sy_;) = a. It is clear that equilibria do not
exist for generic preference profiles. More precisely, equilibria exist only for
preference profiles Ry, characterized by the fact that all participants have
the same best alternative, i.e. maxR;=maxR; for all 7,5 ( in other words
when there is unanimity).

Here the absence of equilibria is due to very large, albeit illusory, en-
forcing possibilities of participants. In any situation (that is for any sy_;)
a participant 7 can enforce his best alternative in the outcome. And he will
undertake this knowing that some other participant might immediately ruin
his attempt at improving the outcome. In the next section, we develop the
idea that consistent mechanisms should rather strongly restrict the enforcing
possibilities of participants.

In what follows, we use roulette mechanisms in order to suppress unde-
sirable equilibria.

(2.1.3) Example. Kingmaker. This mechanism was mentioned in (1.4.2).
Recall that S; = N — {1},S; = A for j # i, and

(81,5 8n) = S5, -

This simple mechanism possesses interesting properties. To begin with,
it is consistent. In effect, let Ry be a preference profile. Note that each
participant j # 1 has a dominant strategy, i.e., a strategy which is optimal for
any strategies of other participants, namely s7 = maxR;. The kingmaker does
not have a dominant strategy; his best response s depends on alternatives
chosen by the other participants. Namely, he selects the participant who
chose the best (among s, ..., s, ) alternative with respect to R;. Clearly, this
strategy profile is an equilibrium, and the corresponding outcome is Pareto
optimal.
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Note that, apart from this “natural” equilibirum, there might be other
equilibria. Nevertheless (and this is another positive property of this mech-
anism), any equilibrium outcome is Pareto optimal, because it is the best
alternative for the “king”.

Therefore every equilibrium outcome lies in the set {maxRo, ... ,maxR,}.
We might think that it is equal to maxR; |{maxRs, ... ,maxR,}. However,
this is not true; in effect, any element from the set {maxRs, ...,maxR,} can
be an equilibrium outcome at the preference profile Ry. For example, let
us show how to enforce alternative a =maxR, as the equilibrium outcome.
Suppose that all remaining participants name alternative a, and participant
1 crowns participant 2 as a “king”. It is easy see that a is an equilibrium out-
come. However, if maxR; # a then naming alternative a¢ would be a strange
behaviour for participant j. For example, if (maxR;)Ria, then participant
J, by choosing s; =maxR;, and participant 1, making j the king, would be
better off. But this requires a certain coordination in the actions of partici-
pants 1 and j, for instance uniting them in a coalition. This line of reasoning
shows, once more, that the Nash equilibrium concept requires some refining
(see Chapters 3 and 5).

(2.1.4) Example. We present here a variant of the preceding mechanism.
We consider only three participants for simplicity. Let S; = L, Sy = S5 = A,
and

(R, az,a3) = max(R | {az,a3}).

Participants 2 and 3, as in Example (2.1.3), name alternatives whereas par-
ticipant 1, this time, chooses an alternative out of these two (in Example
(2.1.3) he chose one of the participants). We might think that this is not very
much of a difference, but this is wrong.

This new mechanism is also consistent. Participant 1 has now a dominant
strategy - to call his true preference R;. And if sj = s§ = maxR;, then this
is an equilibrium. However it is quite difficult to believe that participants 2
and 3 will name precisely maxR;. We can expect they will name their best
alternatives a; =maxR;, ¢ = 2, 3. But their behaving this way may not be an
equilibrium. Assume the following preference profile Ry,
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and s7 = R;. If participant 2 calls u, and participant 3 calls z, then the
outcome is equal to z. Participant 2 can improve upon the result if he names
y instead of u. Thereafter, participant 3 might also switch from z to z. Now
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the strategy profile (Ry,y, ) is an equilibrium with outcome z. x is efficient,
but for the coalition {2,3} this equilibrium is worse than z.

If participant 1 uses his dominant strategy, ie., names his true prefer-
ence, then any equilibrium outcome is Pareto optimal. But in general, an
equilibrium outcome can turn out non-optimal. Let us consider the following
preference profile,
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and strategies s = (z > y »= ), s3 = s5 = y. This is an equilibrium with
non-optimal outcome y. However, the behaviour of participants in this case
seems implausible.

(2.1.5) Example. The Simple Majority. We consider only three partic-
ipants to make matters simple. Each participant names an alternative; the
alternative which collects the most votes is the winning alternative. If all three
participants name different alternatives, then the outcome is the alternative
named by participant 1.

Here participant 1 has the following dominant strategy which consists in
naming his best alternative, i.e. maxR;. Pose a =maxR;; this alternative a
serves as the starting-point for participants 2 and 3 (compare this with the
“status quo” point appearing in examples (1.3.3) and (1.3.4) of Chapter 1).
Given fixed preferences R, and Rz, we define the set

U="U(a) ={z € A, xRsa and zR3a}.

Then any element z € U can be an equilibrium outcome: it suffices that
participants 2 and 3 name x.

However, these “reasonable” equilibria are not the only ones to exist. In
the spirit of the preceding example, we should expect some “foolish” equilibria
to appear. And there are some: any element z € A is a possible outcome in
a “foolish” equilibrium, that is when all three participants name . We shall
consider the equilibrium outcome issue more in detail in Sections 2.3-2.5.

(2.1.6) Example. This is a variant of the preceding example. Again
there are three participants. In the first step, they elect a “king”. This king
then (second step) names an outcome. The king is elected by majority rule.
If each participant collects one voice, then the roulette mechanism is used
(see Example (2.1.2)).

This mechanism is consistent and implements the following SCC:

Ry — {max R;,max Ry, max R3},
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that is the union of three dictatorial SCFs. We now show how to implement
x =maxR; as an equilibrium outcome. To this end all participants should
first elect unanimously the king to be participant 1, and then participant 1
should name the outcome x. Obviously any alternative, different from either
maxR;, for ¢ = 1,2, 3, is not an equilibrium outcome.

Thus all equilibrium outcomes of this mechanism are efficient, albeit no
single one of them seems very plausible.

The moral of this story is that often enough we attain consistent mech-
anisms through somewhat “foolish” or “deadlock” equilibria from which no
participant may hope to escape by some individual action. As a rule, this
kind of phenomenon occurs as soon as the number of participants is higher
than two. When there are only two participants, consistent mechanisms also
exist although they are more difficult to construct.

(2.1.7) Example. There are two participants and three (for simplicity)
alternatives. Each participant is to reject one of the alternatives; the outcome
consists of a non-rejected alternative. Formally, we should give a tie-breaking
rule to account for the case when the both participants reject the same alter-
native. Usually this tie-breaking rule does not play too big a role. For instance
here, we take the following auxiliary order Ry = (z > y = z) and pose that

m(ay,a2) = max Ro|(A \ {a1,a2}),

where a; figures the alternative rejected by participant i. We assert that
this mechanism is consistent. To prove it we consider two cases. First case:
min Ry # min Ry. Here an equilibrium consists of the “natural” strategies
a; = min R;, ¢ = 1,2. Second case: min R; = min Ry = a. Here one equilib-
rium is: a1 = a, ax = min Ry | (A \ {a}).

In this example again, we get some foolish equilibria. For example, take
the following preference profile,

x x
Y vy |
z z

and let both participants reject z. This is an equilibrium: its outcome is y.
This mechanism implements (see Section 3) the individual core correspon-
dence (see Section 1.5 of Chapter 1),

F(Rl, RQ) =A \ {mian,minRQ}
with one exception, namely for the following preference profile

z z

Y Y
T T
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Here the only equilibrium outcome is z.

(2.1.8) Example. This is again a variant of the preceding example.
Participant 1 rejects one alternative, while participant 2 chooses within the
remaining alternatives. More formally: S; = A, S; = L and

m(a,R) =maxR | (A\ {a}).

This mechanism is also consistent (by the same line of reasoning as in Ex-
ample (2.1.7)). It implements exactly the individual core correspondence.

With this, we end our list of examples. And what conclusions do we draw?
First, any reasonably constructed mechanism has equilibria. Second, often
enough equilibria are either foolish or implausible. In particular, they might
be non-optimal. Notable exceptions to this rule are the kingmaker mechanism
and the mechanism presented in Example (2.1.6).

The fact that we find many “foolish” equilibria among Nash equilibria
suggests that one should focus only on those which are “reasonable”. Game
theory elaborated a number of refinements and reinforcements of the Nash-
equilibrium concept. In what follows, we shall dwell upon two particular rein-
forcements of Nash-equilibria. The first one is related to the use of dominant
strategies, because as we saw in the preceding examples, many absurd equi-
libria result from some participant’s rejecting his dominant strategy, though
the latter exists. The second Nash-reinforcement permits coordinated actions
of participants. These issues will be elaborated further in Chapters 3 and 5.

2.2 Blockings Generated by Consistent Mechanisms

(2.2.1) We have already noticed in Example (2.1.2), that the existence of
Nash equilibria restricts participants’ power (in the sense of 3-blocking, see
Section 1.5). We discuss now more in detail the issue of blockings generated
by consistent mechanisms.

Let us begin with the following simple remark. Assume that the strategy
profile s%; is an equilibrium for a game G(m, Ry). Then for every i € N, the
coalition N — {i} forces the set L(w(s} ), R;) through s} _;. To obtain more
specific assertions about the power of coalition N — {i} one needs to apply
this argument for some well chosen preference profiles. We examine here only
one instance.

Let A = X; U...U X, be a covering of the set A by sets (X;), i € N.
Suppose that the preference R; has the following form (X; = X;), where
the “bar” designates the complementary subset. Assume the mechanism 7
is consistent, then there exists an equilibrium outcome a € A for the game
G(m,Ry). This outcome a belongs to some set X;, therefore the coalition
N — {i} forces X;. Thus we have proved the following proposition.
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(2.2.2) Proposition. Let m be a consistent mechanism. Then for any
covering A = X1 U...U X, there exists a participant i such that the coalition
N — {i} blocks the set X; = A — X;.

In order to rephrase this result, we introduce the following definition.
An alternative a is a pre-equilibrium for a game G(w, Ry) if no participant
i B-blocks the set L(a,R;) (that is a € IC(B?, Ry), in the terms defined
in Section 1.5 of Chapter 1). It is clear that an equilibrium outcome is a
pre-equilibrium. Therefore, if a mechanism 7 is consistent, then the corre-
spondence IC(B2,.) is never empty-valued; this is another formulation of
Proposition (2.2.2).

It is unlikely that the converse of Proposition (2.2.2) will be true. However,
we can say something about some reverse implication. The matter is simplest
in a two participant case, where the consistency of a mechanism is determined
in terms of the blocking B;.

(2.2.3) Theorem (Gurvich). A mechanism m, involving two participants,
is consistent if and only if the blocking B, is mazimal.

Proof. The maximality of the blocking B, was proved in Proposition 2.2.1.
The main difficulty consists in proving the opposite assertion: suppose the
blocking B, is maximal, then the mechanism 7 is consistent. To this end,
we should be able to exhibit a Nash equilibrium for each game G(m, Ry)
constructed with a preference profile Ry = (R;, R2). We divide the proof in
two parts.

I. Suppose first, that we have an alternative a and two sets X1,X> C A
satisfying the following three conditions:

a) Xl ﬂXz = {a},

b) X; C L(G,Ri), 1=1,2,

c) participant ¢ does not block X;, i =1,2.

Then there exists an equilibrium. Following c¢) we know that participant 1
does not block X;. Due to the maximality of B, participant 2 forces Xj.
Let s3 be a forcing strategy for participant 2; that is a strategy driving
the outcome in X;. Similarly, let s be a forcing strategy for participant 1,
i.e., driving the outcome in X,. We assert that the strategy profile (s7,s5)
is a Nash-equilibrium. First of all, m(s},s3) € X; N X5 and, in accordance
with a), m(s},s3) = a. Further, w(-,s5) € X and, in accordance with b)
participant 1 can not improve on the outcome. This is also true for what
concerns participant 2. Therefore (s},s%) is an equilibrium.

II. We now need to show how to build the required a, X; and X,. Note
that it is quite natural to construct the sets X; using lower parts of the linear
orders R; (somehow being careful in dealing with possible common parts).
More exactly, suppose that we have two sets Z;, Z> C A, and

a; = minR;|(A — (Z1 U Z3)).
A pair (Z1,7Z5) is called admissible if
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a') Z1NZy =10,

b’) Z; C L(ai,Ri), 1=1,2,

c¢’) participant ¢ blocks Z;, i =1,2.
For example, the pair (0, () is admissible. Let (Z;, Z>) be a maximal (with
respect to inclusion) admissible pair. Then participant 1 does not block the set
Z1U{a1} (otherwise we could enlarge Z; to Z; U{ay }); similarly, participant
2 does not block the set Z> U{a2}. By force of the maximality of the blocking
and the property a’), this is possible only if a1 = as. Pose now a1 = as = a
and X; = Z; U {a}. It is obvious, that the properties a), b), ¢) are satisfied
for these a, X1, X>. &

In the case of more than two participants, the blocking B, generated
by a consistent mechanism 7, might be not maximal (despite the claim of
Golberg and Gurvich, 1986).

(2.2.4) Example. Suppose four participants name alternatives, so that
S; = A. If three or more happen to name the same alternative, then this
alternative wins. Otherwise, the outcome is determined through the use of
the roulette mechanism described in Example (2.1.2).

It is clear that the mechanism is consistent. Indeed, at any preference
profile, there exists a “stalemate” equilibrium, i.e., in which all participants
name the same alternative.

We assert that any coalition K of a size two is powerless. For any fixed
strategy of the coalition K, the complementary coalition K can force any
alternative as an outcome. Indeed, the coalition K just needs to strive in
order to force the outcome to be determined by the roulette mechanism, and
then manoeuvre in order to crown one of them as “king”. Therefore, here the
blocking B, is not maximal.ll

In the case of three or more participants maximality of the blocking B,
does not imply the consistency of the mechanism 7. The reader will find an
illustrative example in Gurvich (1975). Nevertheless, a weaker version of this
claim happens to be true.

(2.2.5) Theorem. If a blocking B is mazimal, then there exists a con-
sistent mechanism w such that B = B,.

We obtain as a corollary that to any blocking B we can associate a con-
sistent, mechanism 7, such that B C B;.

The proof of this theorem is constructive. Given a blocking B, we devise
a mechanism 7. Then we prove that B is consistent and verify the equality
B = B,. Omitting the maximal subset blocked by empty coalition, we can
(and shall) assume that the blocking B is sovereign (i.e. that it satisfies the
axiom B4). Moreover, we assume that there are more then two participants.

Constructing a mechanism. Recall that in Chapter 1, (1.5.10-11), we con-
structed the mechanism 7p generating blocking B. However mp might happen
to be non-consistent. So we make use here of an “old trick” in the realm of
Nash theory. Namely, before putting the mechanism 7 to work, we grant
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participants a chance to come to a unanimous agreement (consensus) about
an outcome. More formally, we consider a composite (in the sense of (1.5.10))
mechanism. The coarse part of the mechanism uses the unanimity rule: each
participant ¢ names some alternative a; and if all named a; are identical, then
the outcome is determined and equal to a;. Otherwise, when disagreement
occurs, the outcome is defined by the mechanism 7g.

Proving consistency. Let Rx be a preference profile, and a be some in-
dividually rational alternative at Ry. We construct an equilibrium whose
outcome is a. Each participant sends a message a; = a. However this is only
the “coarse part” of his strategy. Additionally, he suggests to remaining par-
ticipants to block the set L(a, R;), if the message of a participant j is not
equal to a. We assert that this profile of messages is a Nash equilibrium.
Indeed, first, the outcome at this strategy profile is equal to a. Secondly, if
some participant j tries to change the outcome and therefore sends a message

a; # a, then all remaining participants attack him and block the set L(a, R;).
Note that they actually can block L(a, R;), since due to maximality of B
participant j does not block L(a, R;) (individual rationality). Therefore an
outcome remains in L(a, R;) for any j, which proves that we have reached
an equilibrium.

Proving that B = B, is straightforward. Let us show that B C B;.
Suppose that a non-empty coalition K blocks a set X. Then this coalition
can do the following: first, break a consensus (if there was one) and second,
block X, using mechanism n. This proves the needed inclusion. The reverse
inclusion follows from maximality of B. B

(2.2.6) The Mixed Strategy Issue. If the agents resort to mixed strate-
gies (denoted by o; € A(S;)) then the mechanism’s outcomes will be lotteries
on A, i.e., elements of A(A):

m: [JAS) = A(A).

It is quite natural to take the set of affine utility profiles uy € U to
be defined on A(A) as the appropriate environment. In chapter 3, we study
direct strategy-proof mechanisms in affine environments. We discuss here
the Nash-consistency issue only. Using mixed strategies might bring about
new equilibria. For example, the “roulette mechanism”, which seldom has
any pure strategy Nash equilibria, is Nash-consistent in mixed strategies. For
instance, the participants need only choose the uniform distribution on the
set {1,...,n} and indicate their best alternatives. Then every pure and mixed
strategy yields the same expected pay-off.

Jackson (1992) provides an interesting example of a mechanism with
IN| = 2,]|A| = 4 in which a mixed-strategy Nash equilibrium Pareto domi-
nates a pure strategy Nash equilibrium.

We know almost nothing about the issue of mixed strategy Nash-consis-
tency in universal environments. Maskin and Moore (1987) discuss the role of
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Pareto efficiency in accounting for mixed-strategy equilibria in implementing
mechanisms. We give here a simple and necessary condition for the mixed-
strategy Nash-consistency of mechanisms, which is similar to Proposition
(2.2.2).

(2.2.7) Proposition. Let m be a mized-strateqy Nash-consistent mech-
anism. Then for any covering of A(A) by sets of the form L; = {z €
A(A)|ui(z) < ¢}, i = 1,...,n, there exists an agent j such that coalition
N\ {j} enforces the set L;.

Proof. We take the affine utility profile uy € U defined on A(A). Let
m(o%) = «* be the mixed-strategy Nash equilibrium outcome. Then z* € L;
for some j. Since o} is an equilibrium strategy profile, u;(m(0;,0*;)) <
uj(oy) < ¢j for any o; € A(Sj). Hence o* ; enforces L;. B

2.3 Strongly Monotone Social Choice Correspondences

(2.3.1) In this section, we investigate a correspondence of equilibrium out-
comes F, : LN = A generated by a mechanism 7 and defined as:

Fr(Ry) =n(NE(n(Rn)).

In this case, the correspondence Fy; is said to be Nash-implemented (or simply
implemented) by the mechanism 7. An SCC F : LY = A is called imple-
mentable if it takes the form F); for some mechanism 7. Here and further on,
we shall not assume that the mechanism 7 is consistent.

What are the properties of an implementable correspondence? We have
discussed previously (refer to the reformulation of Proposition (2.2.2)) one
property of implementable correspondence, namely, F,(-) C IC(B2,-). An-
other important property - monotonicity - was discovered by E. Maskin.

(2.3.2) Proposition. An implementable correspondence is monotone.

The proof is very simple. Assume that the outcome a = w(s}) is an
equilibrium at a preference profile Ry, and let Rj be another preference
profile such that Ry <, Rf. We assert that the strategy profile s% is also
an equilibrium at R;. Indeed, for any ¢ € N we have n (-, s\,_;) C L(a, R;) C
L(a,R)).1

(2.3.3) Remark. This line of reasoning is valid to prove monotonicity in
the cases where we use alternative equilibrium concepts (core, strong equilib-
rium), although it does not work for all kinds of equilibrium concepts since
some “myopia” in agents’ behaviour is required. For example, the sophisti-
cated equilibrium (or subgame perfect equilibrium) concept generates non-
monotone SCCs. One could introduce an equilibrium-with-expected-reply-
reactions concept, generalizing both Nash (or strong) equilibria (in which
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one assumes that other participants do not react on deviation) and core (in
which any reactions are admitted). And again the equilibrium outcome cor-
respondence (in this generalized sense) would be monotone.

(2.3.4) Strong Monotonicity. A correspondence of Nash equilibrium
outcomes possesses a property that reinforces monotonicity. We need one
additional notion in order to formulate this property.

Let F : LN = A be an SCC. Fix a participant ¢ and a set X C A. We
say that an alternative z from X is F-essential for i if x € F(Ry) for some
preference profile Ry with L(z, R;) C X. We denote the set of F-essential
(for a participant ) alternatives in X by Ess;(F; X); it is a subset of X, an
“essential” part of X. We shall often omit the letter F' when the context is
clear enough.

In order to understand this notion, note that a non-essential alternative
x is blocked by the participant i as soon as L(z,R;) C X, that is as soon
as he sets z low enough in his preferences. For example, an alternative x
that does not belong to the image of the correspondence F' is essential for
no participant. Another example: we exhibit the essential elements for the
correspondence U(a) from Example (1.3.3). As is easily seen,

X, ifaeX
Essi(U(a),X):{ @,’ ilf;;X

(2.3.5) Definition. A correspondence F' is strongly monotone if it has
the following property. Let a € F(Ry) and let R} be a preference profile such
that L(a, R}) D Ess;(F; L(a, R;)) for each participant ¢, then a € F(RYy).

Note that strong monotonicity implies monotonicity. Indeed, if RYy >,
Ry, then L(a, R}) contains L(a, R;) and, therefore, contains Ess; (F'; L(a, R;)).
Strong monotonicity of F' means that an alternative a “survives” not only
when it rises, but also when it is dropped “non-essentially”. For example, if
an alternative x does not belong to the image of F', and the correspondence
F is strongly monotone, then F'(Ry) depends only on a restriction of Ry to
the set A — {z}.

Both to acquire some familiarity with the strong monotonicity concept
and sense better its difference with the monotonicity concept, we consider
two examples.

(2.3.6) Example. Three participants and three alternatives: a,z and y.
The correspondence F has the form: F(Ry) = {a} if a gathers a number
of points > 8 points (using the Borda rule), and F(Ry) = () otherwise. The
correspondence F' is monotone, albeit not strongly monotone. To see that,
we consider two preference profiles
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Ry = 7RN:
BEEAER 1] 2] 3]

Then F(Ry) = {a}, F(Ry) = 0, although the restrictions of Ry and R to
the set ImF' = {a} coincide.

=l 2 8
N * *
W * *
=l R
N * *
W * *

(2.3.7) Example. The correspondence U (a) considered above, is strongly
monotone. This can be seen by considering the above formula for Ess and by
applying the following lemma.

(2.3.8) Lemma. Let a correspondence F' be monotone. Suppose that for
any participant i and any subset X C A the set Ess;(F; X) is either empty
or equal to X. Then the correspondence F is strongly monotone.

Indeed, let a € F(Ry). Then a €Ess;(L(a, R;)), hence Ess;(L(a, R;)) is
non-empty and, by assumption, equal to L(a, R;). Suppose now that Ry is
a preference profile satisfying L(a, R}) DEss;(F; L(a, R;)) for any participant
i, then L(a, R}) D L(a, R;),for any i, and therefore (from the monotonicity
of F)ae F(RYy). 1

We give an ultimate general fact about strong monotonicity in the follow-
ing proposition (compare with Lemma (1.3.5)):

(2.3.9) Proposition. If F' and G are strongly monotone SCCs, then
F UG is also a strongly monotone SCC.

Proof. We state the following equality (whose proof is straightforward):
Ess;(FUG,X) = Ess;(F; X)UEss;(G; X).

Now, let a € (FUG)(Rn), and R be another preference profile such that
L(a, R}) D Ess;(F UG, L(a, R;)) for any ¢ € N. Then

L(a, R}) D Ess;(F, L(a,R;)) and L(a,R}) D Ess;(G, L(a, R;))

for any 4. Since a € (F UG)(Ry) = F(Ry) UG(RN), we can assume, for
example, that a € G(Ry). Now from strong monotonicity of G, a € G(RYy)
and therefore a € (FUG)(Ry). 1

(2.3.10) Corollary. For any SCC F, there ezist a (unique) mazimal
strongly monotone sub-correspondence F*™ C F'.

Indeed, F*™ is the union of all strongly monotone sub-correspondences
of F. &

The following theorem explains our interest in the notion of strong mono-
tonicity.

(2.3.11) Theorem. For any mechanism 7, the equilibrium outcome cor-
respondence Fy is strongly monotone.
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Proof. Let a € F;(Rn). That is a = m(s}/), where s% is a Nash equilib-
rium for the game G(m, Ry). We assert that for any participant ¢ and each
of his strategies s; € S; | the following inclusion is satisfied:

7(si, Sn_i) € Essi(Fr; L(a, R;)).

Remark that once the assertion holds, then it clearly follows that the bun-
dle s} is an equilibrium for any preference profile R}y such that L(a, R}) D
Ess;(F; L(a, R;)), for all i € N.

Suppose the reverse holds, that is:

m(si,8n—) & Essi(Fr; L(a, R;))

for some i € N and s; € S;. In other words, the element x = w(s;, s}y _;) is
non-essential for ¢ in the set X := L(a, R;). Form the following preference
profile,
z *
Qn = X — {z} *
7 N7

The set L(z,Q;) is equal to X, and z is non-essential in X. Therefore = ¢
Fr(Qn), which means that the outcome x = 7 (s;, sj_;) is not an equilibrium
for the game G(7, Q). No participant j # i will have any interest in changing
x, since it is his best alternative. Hence participant ¢ can improve on the
outcome x (as z is not an equilibrium). In other words, there exists a strategy
st € S; such that w(s},s%_,)) € X. But this contradicts the fact that s} is
an equilibrium for the game G(7, Ry), since any element from X is prefered
to a = m(s}y) with respect to R;. B

In particular, we obtain that the correspondence F' from Example (2.3.6)
can be implemented by no mechanism, albeit it is monotone. Should the
reader be unsatisfied with the possible empty-valuedness of F', he might sub-
stitute F' by F'U {z}. This new correspondence is also a monotone SCC and
is implemented by no consistent mechanism.

Convinced as we are of the importance of strong monotonicity, we estab-
lish one further useful property of strongly monotone correspondences.

(2.3.12) Proposition. Let F be a strongly monotone correspondence, let
i be a participant and X C A. The following assertions are equivalent:

a) i blocks the set X through F;

b) Ess;(F; X) = 0;

¢) F(Ry) C X for any preference profile Ry , provided R; satisfies (X >
X).
Proof. We show the implication a) = b). Let {i} BpX, that is there exists
a preference R/ such that F(R.,*) C X. Suppose now that the set Ess;(F; X)
is non-empty, and a = maxR;|Ess;(F; X). Then,
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Ess;(F; X) C L(a, R}).

Since the element a is essential in X, then a € F(Ry), for some preference
profile Ry with L(a,R;) C X. Using monotonicity of F' and propping a
up, if needed, one can assume that L(a,R;) = X. Now, a € F(Ry) and
L(a, R}) DEss;(F;L(a,R;)). By definition of strong monotonicity we can
conclude that a € F(R., Ry_;) C X, which contradicts the relation a € X.

The implication b) = c) follows from the definition of non-essential ele-
ments. The implication ¢) = a) is obvious. W

From this we deduce an important assertion on equilibrium outcome cor-
respondences.

(2.3.13) Corollary. Let m be a mechanism, F = F, be the equilibrium
outcome correspondence of this mechanism, and X C A. The following as-
sertions are equivalent:

1) a participant i 5-blocks X ;

2) a participant i blocks X through F.

Proof. Clearly enough, if a participant ¢ -blocks X then, for any pref-
erence R; of the type (X = X), no equilibrium outcomes can be in X. This
proves the implication 1) = 2).

Prove now the implication 2) = 1). Suppose that a participant 7 blocks
X through F.. According to Proposition (2.3.12), we know that for any
preference R; of the type (X = X) each equilibrium outcome is in X. Picking
now an arbitrary strategy sy_; € x;£;S;, we have to show that there exists
a strategy s; € S; such that m(s;,sny_;) € X. Let z = m(s;,sn_;), where
s; is an element of S;. If x ¢ X then everything is all right. If z € X,
then take the profile @ shown in the proof of Theorem (3.11). Given these
preferences, no participant j # ¢ has any interest in changing z, since it is
his best alternative. Moreover x € X and therefore it is not an equilibrium.
Hence the participant ¢ can improve upon this outcome, in the sense that he
can figure out a strategy s’ such that 7(s}, sy_;) € X. B

2.4 Nash-implementable Correspondences

The main result of the preceding Section asserts that the equilibrium outcome
correspondence associated with any mechanism is strongly monotone. Are
there some other properties? The answer is “no”; at least when there are more
than two participants. We show in this Section that in the latter case any
strongly monotone correspondence can be implemented by some mechanism.
The case of two participants is slightly different and thus will be considered
in Section 2.5.
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(2.4.1) The Maskin Mechanism. Let F be an SCC. We construct here
the mechanism 7 = 7 which implements F’, in the case of strong monotonic-
ity. The idea of this construction was originally put forward by E. Maskin,
although some details are new and prompted by the strong monotonicity
property.

Thus, let F : LY = A be an SCC, and A* = Ug, F(Rx) be the image
of F. A participant’s message is a pair (Ry,z), for which Ry € LY and
x € F(Rn). In other words, the set S; of participant i's messages is equal to
the graph of the correspondence F C LY x A. In a more figurative way, each
participant both tries to guess the preferences of the whole group and offers
some admissible outcome.

Suppose that participants send the messages s; = (R%;,z"). We now ex-
plain how an outcome is obtained. One needs here to distinguish three cases.
In the first case, the coordinated case, all participants send the same message
(Rn,z). In this case, the outcome is z.

The second case is almost coordinated. Here all participants except one
(who is determined uniquely and called the dissident) send the same message
(Rw,x); the dissident sends another message (R, z'). The outcome is equal
to ', if 2’ is contained in the set Ess;(F; L(z, R;)), and is equal to x otherwise.
R; is the preference of the dissident from the point of view of the others,
N —{i}. In words, each participant has a right to disagree if the others both
misrepresent his preferences too strongly and try to impose on him a “bad”
alternative. Note that Maskin proposes use of the set L(x, R;) in place of the
set Ess;(F; L(x, R;)); we refine slightly the construction here.

Finally, in all other uncoordinated cases, outcomes are determined using
the roulette mechanism with values in A* (see the notion of a composite
mechanism and the roulette introduced in (1.5.5) and (1.5.10) of Chapter 1).
With this the description of Maskin’s mechanism © = 7p is completed.

Let us study the equilibrium outcome correspondence F implemented by
the Maskin mechanism © = 7. Remark that F' C F}. always holds. In other
words, any alternative a € F(Ry) is attained as an equilibrium outcome for
the game G(m, Ry). For this all participants must send the same message
si = (Rw,a). Then w(s%) = a. Can somebody improve upon this outcome?
No. In fact, every participant ¢ could become a dissident by deviating from s}
and enforcing as a new outcome any element of Ess;(F’; L(a, R;)). However,
this set being contained in L(a, R;), i does not improve upon a, and thus a
is an equilibrium outcome.

The reverse inclusion F; C F' is true only for strongly monotone corre-
spondences F' (compare this assertion with Theorem (2.3.11)).

(2.4.2) Theorem. Let |[N| > 3. If a correspondence F' is strongly mono-
tone, then it is implemented by the Maskin mechanism mp.

Proof. Without loss of generality one can assume that A* = A. One needs
to prove that if s%; is an equilibrium for the game G(w, Ry), then a = n(s%;)
is contained in F(Ry). We consider three cases.



60 2. Nash-consistent Mechanisms

The first case: the situation s} is coordinated, all participants send the
same message (RYy,z). By definition of 7p, a = x and a is contained in
F(R%). Each participant ¢ can enforce as a new outcome any element of the
set Ess;(L(a, R})). However (since we are at an equilibrium), he does not do
it, which means that it is not profitable for him, that is Ess;(L(a, R})) C
L(a, R;). Now from strong monotonicity of F' we conclude that a € F(Ry).

The second case: the situation s}, is almost coordinated, and call the
dissident . Suppose the messages of all participants except i are (R%,x).
If a = z, then we are back to the previous argument. Dissident i could
enforce any outcome out of Ess;(L(a, R})), but he does not. Consequently,
Ess;(L(a, R})) C L(a,R;). Any other participant j could as well decide to
break this ’almost coordination’ and crown himself as the “king” through the
roulette mechanism; consequently, @ = maxR; (i.e. the best-for-j alternative)
for any j # i. As above, a € F(Ry).

Consider now the subcase, for which a # 2 and the outcome a is de-
termined by the dissident ¢. As explained above, a = maxR; for j # i.
The dissident could enforce any element from Ess;(X) as an outcome, where
X = L(a, R}). Since he chose a, then a = maxR;|Ess;(X). By definition
of an essential element, this means that a € F(Qn) for some preference
profile Qn, with L(a,Q;) C X. By strong monotonicity of F, one can as-
sume that L(a,@;) = Ess;(X). But now, Qn =<, Ry. Indeed, if j # i then
L(a,Rj) = A; if j =i then L(a, R;) D Ess;(X) = L(a,®;), a being the best
element of Ess;(X) relatively to R;. By monotonicity of F, we conclude that
a € F(RN)

The third case: the situation sj; is uncoordinated. Here any participant ¢
could enforce as a new outcome any element of A*. Therefore a = maxR; for
any i € N, and a € F(Ry) both by monotonicity of F' and because A* = A.
|

As a consequence (and in the case of three or more participants), there
exists a (unique) maximal implementable sub-correspondence of F, for any
SCC F. Of course, this is F*™ (the maximal strongly monotone subcorre-
spondence of F, see the preceding Section).

Thus, to establish the implementability of a correspondence F' it suffices
to prove its strong monotonicity. We give now some important classes of
strongly monotone correspondences.

(2.4.3) Proposition. If a correspondence F is monotone and neutral,
then it is strongly monotone (and, consequently, it is implemented by the
Maskin mechanism for |N| >3).

Indeed, by the neutrality of F', the set Ess;(X) is either empty or equal
to X. The sequel follows from lemma (3.8). B

Correspondences satisfying the no veto power property provide yet another
class of strongly monotone SCCs. We say that a participant i is weak if he
is not able to block (using correspondence F') any alternative. It is evident
now that Ess;(X) = X for any X C A, and again, by Lemma of Section 3,
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F' is strongly monotone if both F' is monotone and all participants are weak.
This proves the following

(2.4.4) Proposition. Suppose that |[N| >3, F is a monotone correspon-
dence, and all participants are weak. Then the Maskin mechanism mp imple-
ments F'. B

This assertion was proved by E. Maskin.
Minimal monotone correspondences (see Appendix 1.A3) form the last
important class of strongly monotone correspondences.

(2.4.5) Proposition. If F' is a minimal monotone SCC, then F is
strongly monotone (and, consequently, is implemented by the Maskin mech-
anism for |[N| >3).

Proof. Let a € F(Ry), Xi = L(a, R;) and E; =Ess;(F; X;). One needs
to prove that if ) is another preference profile and L(a,@;) D E; for any
i € N, then a € F(Q;). By the minimality criterion (Chapter 1, Appendix
1.A3), there exists a preference profile R} such that F(RY) = {a} and
X! = L(a, R}) C X;. By monotonicity of the operator Ess, Ess;(X') C E .
Substituing Ry by Ry , we can assume that F(Ry) = {a}.

Now we prop up all the non-essential elements of each participant above
a, while keeping invariant the arrangement of the remaining alternatives.
Formally, we consider preferences P; = (R;|(A — X;), Ri(X; — E;), Ri|E;).
If € X; — E;, that is if  is non-essential in X;, then x ¢ F(Py) because
L(z, P;) C X;. Therefore the set F'(Py) does not intersect the set U;(X; — E;).
Moreover the remaining elements can only but fall, when we move from Ry
to Pn. Therefore F(Py) C F(Ry) = {a}. Since F' is a nonempty-valued
SCC, then F(Pn) = {a}. It suffices to note that Py <, Qn and to use the
monotonicity of . B

(2.4.6) Corollary. Let F' be a monotone nonempty-valued SCC, and
|N| > 3. Then there exists a consistent mechanism m such that F C F'.

It suffices to take a minimal monotone sub-correspondence of F' and to
apply the Maskin mechanism. Il

(2.4.7) Using the results obtained above, we exhibit several concrete
implementable correspondences; assuming everywhere that |N| > 3.

I. Let F(Ryn) = A for any preference profile Ry. This SCC is monotone
and neutral, hence, Proposition (2.4.3) is applied.

II. The Paretian SCC Par is implementable for the same reason.

III. The union of a few dictatorial SCFs is monotone and neutral, hence,
is implementable. However, we have already seen (Section 2.3) that the union
of strongly monotone SCCs is also strongly monotone.

IV. The correspondence U (a) from Example (1.3.3).



62 2. Nash-consistent Mechanisms

V. For the same reasons, the Maskin correspondence M (a) is imple-
mentable. One can also remark that this correspondence is minimal mono-
tone.

VI. As will be shown in Chapter 4, any core correspondence C(B,-) is
strongly monotone and, hence, implementable.

(2.4.8) Let us make two closing remarks on the case of three or more
participants. They aim at clarifying possible misinterpretations of Theorem
(2.4.2). First we would like to come back to the idea that the Maskin pro-
cedure might enable the explicit finding of many consistent mechanisms. It
is not so. In fact, the procedure rests crucially on nonempty-valued strongly
monotone SCCs, and we hardly know how to construct monotone SCCs.

The second remark concerns the plausibility of the equilibria which were
used in proving the consistency of a mechanism. These equilibria exist, but
it is quite difficult to understand how participants might built these equilib-
ria through their individual actions. For this, we “just” required that they
both correctly guess each other’s preferences and thereafter reach an agree-
ment about an outcome. If the participants could communicate and talk, then
they could, perhaps, have a guess at others’ preferences. But then they would
most probably behave cooperatively, which in turn would imply that we use
another solution concept in place of Nash equilibria. Indeed if participants
are able to spontaneously reach an agreement, then why would they need a
mechanism at all? Without agreement they would most probably find them-
selves in a uncoordinated state, which is most certainly not an equilibrium.
The situation is worse than that, participants are never able to exit uncoordi-
nated states through sequences of best replies. In short, despite the optimistic
formulation of Theorem (2.4.2), the Maskin mechanism is non-consistent in
practice. We do not know whether “better” mechanisms exist nor do we know
what they might implement.

2.5 Implementation: the Case of Two Participants

(2.5.1) The two participants’ case occupies a special place in the theory of
Nash equilibrium. Indeed the restriction to two participants is crucial for the
theorem of Gurvich and we see further that it is specific in other instances.
For example, the Maskin mechanism is not defined when n = 2 for an odd
reason; in effect, in this case it is not obvious which one of the two participants
is the dissident. However, the specificity of the two participants’ case takes its
origins in a more essential cause: in this case, strong monotonicity does not
warrant implementation. For example, as we shall soon see, the trivial SCC
F = A is not implementable, although it is obviously strongly monotone.
Therefore we need to reexamine the necessary conditions of implementability
and strengthen them.
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In the case of two participants, the inclusion F' C IC(Bp) (which is true
for any number of participants, see Proposition (2.2.2) and Corollary (2.3.13))
begins to play an important role. Additionally in this case the “blocking” Br
is sub-additive: if participant 1 does not block a set X1, and participant 2
does not block a set X5, then X1 N Xy # (. The proof follows from the
above-mentioned Corollary: if participant 1 does not block X7, and F is
implemented by a mechanism 7, then participant 2 forces X; through the
mechanism 7. Similarly, participant 1 forces X, hence X; intersects Xs.

The non-implementability of the SCC F = A follows from here, because
the blocking Bp is not sub-additive. Indeed, here a participant can only block
the empty subset.

Actually, implementable SCCs possess a finer property than just sub-
additivity of Bp. To formulate it, we need the following notion (compare
with the notion of essential elements).

(2.5.2) Definition. Consider the two subsets X1, Xo C A. An alternative
a from X; N X, is bi-essential, if there exists a preference profile Ry =
(Ry, R2) such that ¢ € F(Ry) and L(a,R;) C X; for ¢ = 1,2. The set of
bi-essential elements is denoted by Bess(F'; X1, Xa).

(2.5.3) Definition. An SCC F has the MR-property (in honor of Moore
and Repullo (1990)) if the set Bess(F'; X1, X2) is non-empty for any X1, X»
such that tBrpX;, for i = 1,2.

The MR-property clearly strengthens the sub-additivity property, since
by definition Bess(F; X1, X2) C X1 N Xo.

(2.5.4) Proposition. Let m be a mechanism with two participants. Then
the equilibrium outcome correspondence F; has the MR-property.

Proof. Let the sets X;,X> be given, and suppose that no participant i
blocks X; through F. According to Corollary (2.3.13), a participant ¢ does
not B-block X;. This means that participant 2 has a strategy sj such that
(-, s3) € X;. Similarly, participant 1 has a strategy s such that w(s],-) €
Xs. Therefore, the alternative a = 7(s7, s3) belongs to X; N X». Let now Ry
be such a preference profile that L(a, R;) = X; for i = 1,2. It is obvious that
(sT,s3) is an equilibrium for the game G(w, Ry ), thus a €Bess(F; X1, X5). B

(2.5.5) To sum-up: an implementable correspondence F' satisfies the fol-
lowing three properties:

1. F' is strongly monotone;

2. F C IC(Bp);

3. F has the MR-property.

We assert that properties 1-3 are not only necessary, but also sufficient
for Nash-implementability. For this purpose, we construct the following im-
plementation mechanism u = pp. The basic strategies of this mechanism
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consist of some subsets of A. More exactly, a participant i calls any subset
X_; C A, which is not blocked (through Bp) by the other participant —i.
Once participants selected respectively X_; and X_,, an outcome is formed
using the roulette mechanism with values in Bess(F; X_o, X_1). The latter
set is non-empty if F' has the MR-property.

(2.5.6) Proposition. Let F be a correspondence having the MR-property,
and p = pup be the corresponding mechanism. Then:

o) if F C IC(BF) then F C F,;

b) if F' is strongly monotone, then F' D F),.

In particular, if F' has the properties 1-3, then F' = F,, that is F is
implemented by the mechanism .

Proof. a) Suppose that a € F(Ry). Then, according to the inclusion
F C IC(BF), the alternative a is individually rational, hence participant ¢
does not block the set L(a, R;). Therefore, participant i can send the “coarse”
message X_; = L(a, R—;). It is obvious that a belongs to Bess(F; X_o, X_1)
and that it is the best element of this set for both participants. Therefore,
the dictator whom ever he is, chooses a. We assert that this is a Nash equi-
librium. Indeed the outcome remains in L(a, R;) whatever the message of
participant 1, assuming participant 2’s message X_>=L(a, R—2) = L(a, R1)
remains fixed. A similar reasoning applies to any moves of participant 2.

Let us now prove b). Assume the “coarse” messages X*,,X*, yield
an equilibrium with outcome a for the game G(p,Ry). We show that
a € F(Ry). Suppose that participant 1 both changes his message from
X*, to X_1 = A and puts himself in the king’s seat. Then he can enforce
any alternative from the set Bess(F; X*,, A) =Ess;(F; X*,) as an outcome.
Since we are at an equilibrium then, Ess;(F; X*,) C L(a,R;). Similarly,
Esso(F; X*,) C L(a, R»). Since a €Bess(F; X*,, X*,), then a € F(Qn) for
some a preference profile Q n such that X*, D L(a, Q;), i = 1,2. Therefore

Ess;(F; L(a,Q;)) C Ess;(F;X*,) C L(a; R;) for i =1,2.
From the strong monotonicity of F, we conclude that a € F(Ry). B

(2.5.7) Let us give a “typical” example of an implementable correspon-
dence with two participants. Suppose that B is a “blocking”, that is a mono-
tone relation between N = {1,2} and 2. Let F' = IC(B) be the correspon-
dence of individually rational outcomes. We assert that the correspondence
IC(B) is implementable if B is sub-additive.

According to Proposition (2.5.6), one needs to prove that the correspon-
dence IC(B) satisfies properties 1-3. However we can do it in a simpler way.
First, note that F' = IC(B) has the MR-property. This results trivially from
sub-additivity: if iBX; for ¢ = 1,2, then X; intersects X5. Let a be an arbi-
trary element of X;N X5, and Ry be a preference profile, such that L(a, R;) =
X;. Then a € IC(B). This proves that Bess(IC(B); X1, X2) = X; N X5 and
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F has the MR-property. Therefore the mechanism p = prp is well-defined. We
prove directly that F' = F),. By the same line of reasoning used in proving
a) we get the inclusion F' C F},. Further, F}, C IC(Bg) C IC(B) = F, since
B C Bj.

Example (2.1.2) shows that an implementable correspondence F' can be
different from its individually rational core IC(Br). However, we have the
feeling that both these correspondances should not differ too much one from
another. For example, if the correspondence IC(Bp) is nonempty-valued,
then F' will also be nonempty-valued. Indeed, if IC'(Bp) is nonempty-valued,
then Bp is a fully-fledged blocking, maximal by force of sub-additivity. There-
fore, by the Gurvich theorem, the implementing mechanism is consistent.
Nevertheless, we do not know how we should formulate precisely the idea of
‘proximity’ between F and IC’(BE).

The mechanism p seems much more satisfactory (than the Maskin mech-
anism) in the sense that it happens to be easier for participants to find equi-
librium strategies. In effect, even if participants do not know each other’s
preferences, they can use some “natural” strategies consisting in blocking
alternatives ranked low in their preferences. And it is very likely that these
actions lead to an equilibrium, which on top might be Pareto optimal. We
explain this in the following example.

(2.5.8) Example. There are five alternatives, and each participant can
block any two of them. Suppose that preferences of the participants are
Ry =Ry =(z >y >z > u>wv). Then IC(B,Ry) = {z,y,2}, and all
three outcomes z,y,z can be equilibria. However, the likelihood of their re-
spective occurences is quite different! The outcome z occurs only in the (quite
implausible) case when both participants block their best alternatives z and
y. The occurence of y is also rather improbable. On the contrary, it is quite
natural to think of  as an equilibrium when the first participant blocks {u, v}
and the second blocks {z, y}. Furthermore this example emphasizes the “rich-
ness” of the mechanism 7 in comparison to the implemented SCC F,.. We
mean by this that among all Nash equilibria for the game G(m, Ry) some
might stand out of the crowd, in the sense that they appear more probable
in comparison to others. Whereas in F;(Ry) all alternatives appear rather
colourless.

2.6 Acceptable Mechanisms

We have seen that Nash equilibria can be non-efficient. All the more interest-
ing are the mechanisms whose equilibrium outcomes are all Pareto optimal.

(2.6.1) Definition. A mechanism 7 is acceptable if it is consistent and
F, C Par.
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In other words, we require here that equilibria exist for every preference
profile, and that all of them be Pareto optimal.

We have already seen three examples of acceptable mechanisms: the dic-
tatorial mechanism, the kingmaker (see Example (2.1.3)) mechanism and the
mechanism presented in Example (2.1.6). Can we find other examples of such
mechanisms? What if any, are the obstacles that prevent acceptability? In
this section, we provide a set of partial answers to these questions.

Let us begin with the case of two participants. Generally one might ex-
pect that acceptable mechanisms with two participants be dictatorial (at
least, in the sense of the associated blocking). Indeed, as we have already
suggested, the equilibrium outcome correspondence of a mechanism with two
participants, is close to the individual core, which contains many non-optimal
outcomes if the associated blocking is not dictatorial. As it happens this is
more than a mere expectation; it is true.

(2.6.2) Proposition (Hurwicz, Schmeidler). Any acceptable mechanism
with two participants is dictatorial.

The proof is based on the following general fact:

(2.6.3) Lemma. Let m be a mechanism. Suppose that there exists an
alternative blocked by both a coalition K and its complement K. Then the
mechanism is not acceptable.

Proof. Suppose a coalition K blocks some alternative a using a strategy
sk € Sk, and suppose the coalition K blocks a using a strategy s € Si.
Then the outcome z = 7(sk, si) is different from a. Consider now a prefer-
ence profile Ry, in which all R; are identical and equal to (a > = > ....). We
assert that (s, si) is an equilibrium for the game G'(7, Ry). Indeed, partici-
pants of the coalition K can not improve upon the outcome x (that is to move
it towards a), because the coalition K prevents it using the strategy sz sim-
ilarly for K. However, the outcome z is not efficient, since Par(Ry) = {a}.
|

(2.6.4) Corollary (Dutta). Suppose that a mechanism 7 is acceptable,
and that the associated blocking B, is maximal. Then the blocking B, is
generated by a simple game (see (1.5.7)).

Proof. We need to show that if a coalition K blocks some alternative a,
then K forces any alternative. So, let K block a. By the previous lemma, its
complement K does not block a. Therefore from the maximality of B, the
coalition K blocks the set A — {a}. In particular, K blocks any alternative
of A. Repeating the preceding line of reasoning, we get that K forces any
alternative. H

Proposition (2.6.2) follows now from the maximality of the blocking B, as-
sociated to a consistent mechanism with two participants (Theorem (2.2.3)).
|
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(2.6.5) Remark. One ought to evaluate the somewhat “pessimistic”
Hurwicz-Schmeidler proposition with the same prudence as all other theorems
related to the use of Nash equilibria. Their result is obtained at the expense
of somewhat “implausible” equilibria. Consider, for instance, the mechanism
described in Example (2.1.8). In this mechanism, participant 1 blocks some
set X C A, while participant 2 (using an order R) picks an element out
of A — X. The second participant has a dominant strategy which consists
in choosing his true preference. And indeed he might use it. In this case,
the whole situation is different. If participant 2 uses the strategy s; = R,
then any equilibrium outcome is efficient. Indeed, let a = 7 (X, R2) be an
equilibrium outcome. Participant 1 can force the outcome to be any element
x of the set A — L(a, R»); for this, he needs only to block the set X — {x}
instead of X. But he does not do it, which means that all these possible
alternatives x are worse for him than a, that is a € Par(R;, R2). Therefore,
this mechanism is acceptable in practice.

Thus we can find many “practically acceptable” mechanisms, even if for-
mally speaking, except for dictatorial mechanisms, there are no other accept-
able mechanisms in the case of two participants.

Let us examine the three-and-more-participants case. In this case, there
are many acceptable mechanisms. Take any efficient and strongly monotone
SCC, then its Maskin mechanism is acceptable. More specific examples of
such SCCs are (see Section 2.4 above): the correspondence Par, the Maskin
correspondence M (a), any union of dictatorial SCFs, any core correspondence
for a blocking with property B4. However, as we already noted, Maskin mech-
anisms formally have equilibria, but in all practical cases these equilibria are
not attainable.

We now discuss the issue of participants’ power within acceptable mech-
anisms. A participant ¢ is strong if he is able to block (in the sense of B;) at
least one alternative; otherwise he is weak. Generalizing Proposition (2.6.2),
we prove the following assertion:

(2.6.6) Theorem. Let 7 be an acceptable mechanism. If some participant
is strong then all other participants are weak.

Proof. Let us suppose conversely that there are two strong participants i
and j. Participant ¢ blocks an alternative z, and participant 7 blocks an alter-
native y. By lemma (2.6.3), z # y. Moreover, by the same lemma, participant
i B-enforces z, and the participant j S-enforces y. Now if their preferences
are such that maxR; = x and maxR, = y, then there are no equilibria. B

In the preceding examples of acceptable mechanisms, all participants were
weak. Therefore we can wonder whether we might find an acceptable mech-
anism with a strong participant, who is not a dictator. The answer is affir-
mative, as is shown in the following example.

(2.6.7) Example. There are three (or more) participants. A strategy of
a participant consists in choosing a function u; : A — RU{—o00}, where
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u;(.) # —oo for all participants (except participant 1,whose u;(.) at alterna-
tive a is possibly equal to —oo). Further, all participants except participant
1 also call a number ¢; € {0,1}. We define an outcome of this mechanism
as follows: the outcome belongs to Argmax(u;), whenever some of the ¢; is
different from 0; the outcome maximizes the function 6, -u; + 3, 21 Wi where
0qa(x) =0 at ¢ # a and d§,(a) = 1, whenever all ¢; = 0.

We assert that:

a) the mechanism is consistent. Indeed, let all ¢; = 1, and the function
uy be a representant of the true preference of participant 1. Then the out-
come is maxR;, and this is an equilibrium. In fact, no participant (excepting
participant 1) is able to change the outcome.

b) any equilibrium outcome is Pareto optimal. This is obvious if e; = 1 for
some 4. Suppose now that all g; are equal to 0. If a is the only Pareto optimal
alternative, then it is an equilibrium outcome since participant 1 -enforces
a. If Par(Ry) # {a}, then the effectiveness of the outcome follows from
the fact that any participant (different from 1) can enforce any alternative
(different from a) to be an outcome.

c) participant 1 can block the alternative a. To do so, he might select a
w1 such that w1 (a) = —oo. Thus he is strong.

d) participant 1 is not the dictator, since equilibrium outcomes can be
different from maxR;. (However, they can not be worse than a for participant
1.)m

(2.6.8) In conclusing Chapter 2, we reckon that the Nash equilibrium
concept is somewhat unsatisfactory. On the one hand, there are many absurd-
looking equilibria; it is unlikely that reasonable people might choose such
strategies. Apparently, one needs to use a stronger or more refined equilibrium
concept, which decreases the number of equilibria. On the other hand, it
remains unclear how participants could attain a “nice” equilibrium (when and
if it exists); compare this with the discussion about the Maskin mechanism
in (2.4.8). We would expect that mechanisms help to find “nice” equilibria
and that they monitor somewhat our way towards “nice” outcomes.

In the next chapter, we consider in more detail the concept of dominant
strategies equilibrium, which is more rigid than the Nash concept. This con-
cept is free, in many respect, from previous objections. Some reinforcements
of the Nash concept in the sense of coalitional stability will be considered in
Chapter 5.

2.A A Simple Mechanism for the Implementation of Wal-
rasian Equilibria

(2.A.1) In Chapter 2, we dealt with a finite set of alternatives A and arbitrary
weak orders on it. Here we show how that approach works in an “economic
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environment”, namely in a pure exchange economy. More exactly, we show
that Walrasian equilibria are implementable by a simplified version of the
Maskin mechanism.

We briefly sketch the pure exchange set-up at stake. The agents of some
group N want to trade their initial endowments. Let G be a (finite) set of
types of goods. A commodity bundle is an element of the space V = RY.
The initial endowment of agent ¢ is denoted by w;. An after-trade alloca-
tion (z;) satisfies the balance equality > z; = > w;. Any such allocation is
termed feasible. Thus, the set A of alternatives consists of feasible allocations.
Moreover we suppose that each agent only cares about the bundle he gets
at the end of the day. Therefore agent i’s preferences depend only upon z;.
Furthermore we assume preferences to be strictly monotone (x > y implies
that z is strictly preferred to y) weak orders R; on V.

Suppose now that the commodity prices are given, that is we have a non-
negative linear functional p on the commodity space V. A pair (p,zy) is a
competitive (or Walrasian) equilibrium if the allocation zy is feasible and if
the commodity bundle z; is the most preferred (in the sense of R;) bundle
in the budget set B(i,p) = {z € V,pz; < pw;} of every agent i. The set of
equilibrium allocations zx is denoted by W(Ry).

(2.A.2) Here we consider a simple mechanism f implementing the Wal-
rasian correspondence W in the case of three or more agents. This mechanism
is a version of the Maskin mechanism seen in (2.4.1). Let us recall that in
the Maskin mechanism 7 the (basic) strategies have the form (Ry,a) where
a € F(Ry). However in that set-up the sets L(a, R;) play the crucial part.
In our (as in Dutta et al. (1995)) mechanism, prices p will stand for the
preference profile Ry whereas budget sets will stand for sets L(a, R;).

More precisely, agents strategies (or messages) take the form (p, z ) where
p is a non-negative linear functional on V and zy is a feasible allocation
satisfying px; = pw; for every agent i. As in the Maskin mechanism, we
define the outcome for each of the following three cases.

Case 1: all agents send the same message. The outcome is z .

Case 2: all agents except agent i send the same message, (p, ), whereas
i sends (p', zy). The outcome is x'y, if pz} < pw;; or 5 otherwise.

Case 3. The “roulette” mechanism acts as soon as case 1 or case 2 do not
obtain.

In words this means that each agent proposes his pair of prices and al-
location. The outcome of the mechanism is the common proposal when all
proposals coincide. Now an agent can always deviate and try to obtain an-
other bundle z} such that pz} = pw;, if it turns out that the bundle z; offered
to him is not best in his budget set B(i,p). To do so he will have to send a
message (p, rly) where =, = z; — (z; — z;)/(n — 1) for j # .

(2.A.3) Proposition. If Ry is a profile of strictly monotonic preferences
the W(Ry) = f(NE(f, Rx)).
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The proof is based on the same arguments which were used in proving
Theorem (2.4.2). If (p,xn) is a Walrasian equilibrium, then it can be chosen
as a strategy in our mechanism. If all agents send the message (p, ), we then
have a Nash equilibrium. This proves the inclusion C . Conversely, suppose
we have an equilibrium strategy profile. It is easy to understand that it should
be a profile of coinciding messages (p, zn). Indeed, if not some agent could
activate the roulette mechanism and improve his outcome (we use here the
strict monotonicity of preferences assumption). We now only need to check
that (p,zn) is a Walrasian equilibrium. This implies that we show that the
bundle z; is among the most preferred bundles in the budget set B(i,p), for
every agent 1.

Suppose, conversely, that agent ¢ prefers bundle z} to x; and that z} is
in his budget set B(i,p). By monotonicity, we can consider that px} = pw;.
Therefore this agent can (by deviating from the agreed upon message as
described above) get hold of this better bundle z}. But this contradicts our
assumption that ((p,zn)ien) is a Nash equilibrium. B

The reader will note that we do not worry about the existence of equi-
libria issue (be it Nash or Walrasian), nor do we worry about the domain of
definition of agents’ preferences, assuming that they are defined on the whole
commodity space V. Our main goal was to design a simple mechanism (the
strategies are pairs of “prices-allocations”) whose outcomes be precisely the
feasible allocations.
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and Repullo (1990); it influenced our exposition of the two participants’ case
of Section 5.

There are many results about non-cooperative implementation, related to
other solution concepts (refinements): subgame perfect equilibrium (Moore
and Repullo (1988), Abreu and Sen (1990)), backward induction (Dutta and
Sen (1990)), dominance solvability (Moulin (1979, 1983)). Roughly speaking,
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these results claim that any SCC can be implemented. See also a survey by
Moulin (1982). Implementation via strong (or coalitional) equilibria will be
considered in Chapter 5.

The optimality of Nash equilibria issue has interested investigators for a
long time. On the one hand, there is no reason to expect that selfish behavior
of agents might always lead to the social optimum. On the other hand, Wal-
rasian equilibrium (which is essentially a Nash equilibrium) is efficient. The
concept of acceptable mechanism was introduced as a possible answer to the
Gibbard-Satterthwaite theorem. (Peleg (1978) provided another interesting
answer, see Chapter 5). Hurwicz and Schmeidler (1978) showed that in the
case of two participants, any acceptable mechanism is dictatorial (see also
Dutta (1984)). When there are three or more participants, there exist rather
many acceptable mechanisms. Two interesting “acceptable (with respect to
considering an economic environment )” mechanisms are presented in Walker
(1981) and Hurwicz (1979) (see also Kim (1993) and Tian (1993)); we discuss
them in Appendix 3.A2 of Chapter 3.






3. Strategy-proof Mechanisms

In this chapter we examine strategy-proof mechanisms, i.e., mechanisms that
endow every agent with the best (called dominant) strategy for each permis-
sible preference profile. Based on the revelation principle, we construct, for
every strategy-proof mechanism, an equivalent direct non-manipulable mech-
anism. The key characteristic of such a mechanism is the agent’s effective re-
gion in the set of outcomes. From this point of view, we study the structure
of non-manipulable mechanisms in both the universal and the single-peaked
environments (Sections 3.1 and 3.2). The convex structure of the outcome
set yields an affine environment and allows us to mix strategy-proof mech-
anisms. In Section 3.3 we conjecture that any non-manipulable mechanism
(within an affine environment) is a probability mixture of duplet and unilat-
eral non-manipulable mechanisms. In the following two sections, we study the
properties of Groves mechanisms in transferable environments, in particular,
the issue of efficiency. We present some efficiency evaluations and efficiency
criteria for Groves mechanisms.

We conclude the chapter with two Appendices. Appendix 3.A.1 contains
comparative efficiency data for both Groves and Clark mechanisms, depend-
ing on the number of agents. Appendix 3.A.2 elaborates upon the Walker and
Hurwicz concept of acceptable mechanisms in a transferable environment.

3.1 Dominant Strategies. The Revelation Principle

(3.1.1) One of the main drawbacks of Nash equilibrium is the difficulty for
participants to find an equilibrium, even if they know that it exists. For exam-
ple, in discussing the Maskin mechanism, we saw that finding an equilibrium
essentially implied agents’ knowledge of each others’ preferences. Mechanisms
theory addresses cases in which agents know for sure their own preference,
while possibly having a vague idea about others’ preferences. This is quite a
different case from that in which the preferences of all agents are known.
Thus we would not expect that agents acting independently would be
able to attain a Nash equilibrium. More realistically we expect that some
preliminary negotiations will take place. The participants send trial mes-
sages, possibly changing them if they find better ones and so on. In other
words, an iterative procedure precedes the attaining an equilibrium. In fact,
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this iterative procedure amounts to transiting from an initial mechanism
7 : [[; Si = A to some “informational” extension 7* : [[, S¥ — A, of the
mechanism 7 whose strategies are the strategies of negotiation and exchange
of information between agents. But we have to deal with the same issues
about equilibrium and etc. for the mechanism 7*.

There is another approach where an agent, not knowing the behavior of
any of his partners, follows his subjective beliefs about other agents. This
unties the system and allows us to model the behavior of every agent indi-
vidually based on his preferences and beliefs. In this approach, difficulties
arise with the forming of beliefs corresponding to the real behavior of other
agents.

However, a large part of these difficulties disappears when an agent hap-
pens to have a dominant strategy, i.e., a strategy which is optimal for any
strategies of the other agents. Due to this property, dominant strategies are
sometimes called absolutely optimal. The concept of dominant strategy is
not very interesting for game theory. An agent endowed with such a strat-
egy is in fact not a player because he only needs to stick to his dominant
strategy. (Of course, he might decide not to use it, but then he would be
pursuing some other kind of goal, differing from utility maximization. There
are other reasons which can explain deviating from dominant strategies, such
as coalitional effects or threats. However, if agents do not communicate with
each other, then their using dominant strategies seems quite plausible.) On
the other hand, the notion of dominant strategy is of great interest for the
theory of social choice mechanisms. Indeed, one of its main tasks consists in
constructing mechanisms in which agents have dominant strategies in order
to forecast both the behaviour of participants and the resulting outcome.

We now give a few formal definitions. Let 7 : Sy — A be a social choice
mechanism.

(3.1.2) Definition. A strategy s; of agent i, endowed with a preference

R;, is dominant if
m(si,sn\i) Rim(8i, 5n\)
for any s; € S; and sy\; € Sn\-

It is important here that the optimal strategy s} be independent of sxs,
although it may depend on R;. Usually (and this is almost a rule) there are
either no dominant strategies or several. Denote the set of dominant strategies
Dom;(m, R;) or simply Dom;(R;).

(3.1.3) Definition. Let Ry = (R;) be a preference profile. A strategy
profile s% = (sf) is a dominant strategy equilibrium or (DS-equilibrium) if
s; € Dom;(m, R;) for every agent i € N.

Note that a DS-equilibrium is a Nash equilibrium, but the reverse is not

true.
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(3.1.4) Definition. A mechanism 7 is dominant strategy mechanism (or
DS-mechanism, or strategy-proof mechanism) in the environment Prof C LY
if for any feasible profile of preferences Ry € Prof, the game G(w, Ry) has
at least one DS-equilibrium.

Clearly the DS-property for mechanism survives any restriction of the
environment. On the contrary, the wider the environment the lesser DS-
mechanisms, and it is all the more easy to describe them all. The number of
DS-mechanisms is smallest in the universal environment LY.

(3.1.5) The Revelation Principle. This principle enables us to con-
struct from any general form DS-mechanism an “equivalent” direct DS-
mechanism. In what follows, we shall assume an environment of the form
Pn = Py X ... x P, where P; C L is a domain of “feasible” preferences of
agent 7. Assume that a mechanism 7 : [, S; = A is strategy-proof in the en-
vironment Py = [, P;. This means that the set Dom;(R;) is non-empty, for
any R; € P;. And we choose an element d;(R;) in Dom;(R;). We construct
in this way a series of mappings d; : P; — S;, ¢ € N. Let us now construct
the new mechanism

W*:FOdN:H'Pil_LfiHSil)A.

The feasible preferences become strategies for the mechanism 7*, so this is
a direct mechanism. It is easy to understand that 7* is also a DS-mechanism.
More exactly, agent i (endowed with the preference R;)’s dominant strategy
is R; in the mechanism 7n*. Thereby the mechanism 7* induces participants
to reveal their true preferences, i.e., it is non-manipulable. In some sense,
the mechanisms 7 and 7* are “equivalent” (we shall not define precisely this
concept here). The revelation principle is the process which leads from a
DS-mechanism 7 to the direct non-manipulable associated mechanism 7*.
From now on, when we speak of DS-mechanisms we shall mean simply non-
manipulable mechanisms.

Remark. When we defined the mechanism 7*, we arbitrarily chose a se-
lector d; in Dom;. When preferences are linear orders, the resulting mapping
m* does not depend on this arbitrary choice of a selector. In the more general
case of weak orders, the mapping 7* may depend on the choice of a selector.
Nevertheless, we shall consider only direct mechanisms.

(3.1.6) The Single Agent Case. Let us examine for a while the con-
struction of non-manipulable mechanisms in the single agent case. We might
wonder why we should need any mechanisms in this specific case. The issue
is the following. Let 7 : [[, S; = A be a direct DS-mechanism with several
participants. Supposing the strategies of all agents (different from agent i)
are fixed, we end up with a DS-mechanism 7(-, Ry\;) : P; — A depending
only on agent i. And it is useful to understand its construction.
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Let P C L be a domain of preferences and
T:P—> A

be a single agent non-manipulable mechanism, set within the environment
P. Its most important characteristic is the set Z = 7w(P). We will call the set
Z agent i’s effective region (or option set, as S.Barbera calls it). The set Z
plays a crucial role in the recovering (uniquely) of mechanism ; indeed for
any R € P

m(R) =maxR | Z.

This is simply a rephrasing of the non-manipulability condition: for any
R, R' € P the relation 7(R)Rn(R') should take place.

This remarkable feature prompts a method for constructing any arbitrary
non-manipulable mechanism. Take a set Z C A and define the mechanism
mz : P — A by the formula

mz(R) =maxR | Z

for R € P. Obviously the mechanism 7z is non-manipulable.

Note, incidentally, that the set 7z(P) may turn out to be smaller than
Z. In short, different sets Z C A may yield the same mechanisms. However
this does not matter too much; one can choose, for example, the smallest or
the largest among these sets Z. Thus the single agent case is clear-cut.

Dealing with weak orders, there is a caveat: 7(R) need only be one of the
maximal points of the relation R | Z, i.e. 7(R) € max R | Z. And therefore,
in this case, the set Z does not allow a recovering of the mechanism 7 in a
unique fashion, although it remains its most important characteristic.

Having examined the single agent case, we return to the general case.
Let m : [[;cyPi = A be a non-manipulable mechanism. We fix an agent
i and a preference profile Ry\; € Py\;- As was explained above, any non-
manipulable single agent mechanism 7 (-, Ry ;) determines and is determined
by the set Z = Z;(Ry\;), which in turn depends on the environment Rpy;.
In particular, the mechanism 7 is completely given by the family of sets
(Zi(Rn\;)) where Ry\; runs the set Py;. We could almost think that we
have our answer since we are able to describe any DS-mechanism! Alas, this is
all too hasty a conclusion! Indeed, up to now we used solely the fact that agent
i has a dominant strategy. But we need to consider the remaining agents. And
in fact the requirement of non-manipulability for other agents is expressed
through some strong interdependence of sets Z;(-) for the environment. The
whole matter and the whole mystery, the key to understanding structure
of DS-mechanisms, lies within this dependence. The following sections will
clarify these matters. Meanwhile, we illustrate this method in the universal
environment setting.

(3.1.7) Universal Environment. Let every P; = L. Then, a non-
manipulable direct mechanism is simply a non-manipulable SCF, with which
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we became familiar in Chapter 1. We already know the answer: this non-
manipulable mechanism is either a duple or a unilateral SCF (the Gibbard-
Satterthwaite theorem (1.A2.7)). However, for the time being, for the sake of
simplicity, we will assume that there are only two agents (in any case, this
does not change essence of the matter). Here the environment consists only
in giving a preference R, for agent 2. This yields a family (Z(R)), R € L, of
non-empty subsets of A; the mechanism 7 acts by the formula

m(R1, R2) = max Ry | Z(R»).

If all sets Z(R) are singletons, then agent 1 does not at all influence the
outcome and the mechanism = is unilateral with a “dictator”, namely agent
2. Assume now that for some R the set Z(R) contains more than one element.
If Z(R) does not change with R, then the mechanism is unilateral and agent
1 is the dictator. We consider in more detail the dependency of Z(R) on
R. The non-manipulability condition implies the following properties for this
dependency: suppose that we move from the linear order R to R’', then

a) if an element disappears from Z(R), then all elements ranking higher
with respect to the order R also disappear with it;

b) new elements appearing in Z(R') with respect to those in Z(R), are
ranked below any element of Z(R).

For example, if R={x >y >z >a>b>c>d>e)and Z(R) =
{y,a,b} then Z(R') could look like {a,b,d, e}, but not like {z,a,d}, {y,b,c}
or {z,a,b}.

Indeed, suppose that contrary to assertion a) an alternative x disappeared
from Z(R), but that an alternative y situated higher than x remained. Let
Ry =(xz>y>..). Then m(Ry,R) =z, 7(R1,R') = y and yRz. This implies
that agent 2 is able to exert some manipulation: the untruthful preference R’
is clearly more advantageous (for agent 2). Assertion b) is proved analogously.

Now we turn to proving the fact that Z(R) is independent of R.

It is convenient to proceed to the comparison of the sets Z(R) and Z(R'),
by moving from order R to R’ step by step, namely starting with R and
switching only two elements at every step. Assume the alternative x precedes
the alternative y, in the ordering R :

R=(..>z>y>..).

The transition from the order R to an order R’ = (... = y > x > ...) where
the other alternatives stay at their places is called a switching. There is now
a standard result from permutation group theory, which states that one can
proceed from any one order to another by a finite number of switchings.
With this in mind, our task is slightly simpler: we need only compare the
sets Z(R')and Z(R) when R’ is obtained from R after switching two given
elements. If Z(R') # Z(R) then (w.l.o.g.) thereis z € Z(R)\Z(R'). According
to a) Z(R') lies below z with respect to R, and according to b) Z(R') is
above with respect to R'. This is possible (at |Z(R)| > 1) only if z = «z,
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Z(R) = {z,y}, Z(R') = {y}. Thereafter we conclude that if |Z(R)| > 3 the
set Z(R) remains unchanged and agent 1 is the “dictator”; if |Z(R)| = 2 the
mechanism is a duple (whose efficiency region can sometimes be reduced to
one element).

3.2 Single-Peaked Environment

(3.2.1) We now undertake a more detailed study of DS-mechanisms for a
few specific environment classes. As we have already mentioned, we ordinar-
ily obtain a narrower environment, by imposing some additional structure
(with which the agents’ preferences are to some extent compatible) on the
set of alternatives. Then the appearance of new DS-mechanisms (other than
the dictator or the duple mechanisms) follows from new opportunities for
compromising, for softening out extreme viewpoints. The single-peaked en-
vironment is the most significative example of such cases.

We have a single-peaked environment when the set of alternatives is some-
what similar to a “line”, or possesses a “linear structure”. If we name (conven-
tionally) one end of this “line” the left and the other the right, this amounts
to defining a linear order R® on A, which expresses the idea of moving from
the left to the right (however the choice of left and right gives us two possible
ways of doing it). We choose a linear structure on A. A preference R € L(A)
is single-peaked or unimodal, if moving from alternative max R either to the
left or to the right, the utility function is decreasing. In terms of the utility
function, the following picture can be drawn (Fig.2).

u(a)

max R

Fig. 2. A unimodal utility function.
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The alternative max R is the happiness or the bliss point of R. In many in-
teresting cases, preferences are indeed single-peaked. For example, we can al-
ways imagine representing political parties on a “left-right” scale. Each voter
has a most acceptable political program; moves to the left or to the right
(of this most acceptable program) correspond to decreasingly attractive pro-
grams. One can devise preference upon indices (such as defense expenditure
indices and so on) in the same fashion.

We denote by U the set of all single-peaked preferences. The single-peaked
environment is defined as /¥ C L¥. Single-peaked preferences are not deter-
mined uniquely by the giving of a happiness point, but it is a crucial item of
information. Henceforth we consider mechanisms for which the agents’ mes-
sages consist in giving their happiness points, not their whole preference, and
non-manipulability will be understood in relation to these happiness points.
Thus a mechanism, in this section, will be a mapping

x: AN 5 A.

The non-manipulability property is expressed as follows: for every agent
i € N and for every single-peaked preference R; € U, max R; belongs to
Dom;(m, R;). In other words, for every agent, reporting the true happiness
point is a dominant strategy. Can we find non-manipulable mechanisms, other
than dictatorial mechanisms ( a mechanism being dictatorial if 7(zn) = z;
for a fixed “dictator” 4) ? It turns out that we can find some (and sufficiently
many of them). We now provide a few examples.

(3.2.2) Example. The classical median. Let there be an odd number of
agents and let them name alternatives (points) z; € A,i € N. Among these
points, there exists one point z* such that both to its left and to its right
there are < n/2 points z;. This point z* is unique and is called the median
of the family of points (z;). We construct the classical median mechanism by
associating to each bundle (z;) its median z*.

We affirm that this mechanism is non-manipulable. Pick an arbitrary
participant ¢ and assume that his bliss point z; is located to the left of z*. He
is not able (through any strategy) to pull the point z* to the left, therefore
closer to his bliss point. He is able to move the median outcome z* to the
right, just by setting his “bliss-point signal” z} to the right of z*, but it is
not interesting a strategy for him.

(3.2.3) Example. Left (or right)-dictator mechanism. The point min RO |
{z1,...,x,}, located at the extreme left of all points z;, is chosen to be the
outcome of a “left-dictator” mechanism 7 (z1, ..., z,). The non-manipulability
of this mechanism in a single-peaked environment is proved as above in Ex-
ample (3.2.2).

We define the “right-dictator” mechanism similarly by:

m(xy) = max R® | {z1,...,z,}.
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These three mechanisms are anonymous. How do we construct anonymous
non-manipulable mechanisms in general? The following example (Moulin
(1980), see also Moulin (1985), p.23) gives us the answer.

(3.2.4) Example. Fix n + 1 alternatives ao,...,a,, in the set A. We
define

w(xy1,...,2,) = median of (z1,...,Zn, Go,...,a0n).

Again it is not difficult to verify that this mechanism is non-manipulable.

There are many non-anonymous and non-manipulable mechanisms. More-
over, we surely would hope to have a more complete picture of the set of all
such mechanisms. As it appears we can, we now show how to construct any
arbitrary non-manipulable mechanism.

(3.2.5) The Median Operation. We start with a general remark. The
setting of an additional structure on the set A often permits us to construct
new mechanisms from known ones. We explain how through an example, set
in the single-peaked environment. The remarkable feature of a linear structure
on a set A, is that picking any three alternatives x,y and z, one of them will
be located between the two others. This “middle” alternative is called the
median of the triple (z,y,z) and is denoted by wu(z,y,z). The inf and sup
operations (with respect to the order R°) can be rephrased using u as follows:

inf(z,y) = p(A,z,y), sup(z,y) = p(z,y, ),

where A = min R? is the left end of A,and IT = max R is the right end. The
median, by the way, can also be expressed through inf and sup:

p(x,y, z) = sup(inf(z, y), inf (y, 2), inf (z, 2)).

The nice thing about using the median formulation is that it does not require
that we first determine a (out of the two possible directions) direction on A,
i.e. we need not define which end will be called the left and which the right.

If now we take three mechanisms 7; : AN — A j = 1,2,3, then we can
conceive a new mechanism 7 = p(m, 72, m3) as follows,

m(zn) = p(m(zn), T2 (2N ), m3(2N))-

(3.2.6) Lemma. If 7y, my, 3 are non-manipulable, then m = p(mwy, wa, m3)
is non-manipulated.

The proof boils down to the following straightforward assertion. Let
a,y1,Y2,Ys3, 21, 22, 23 be seven points from A. Assume y; € [a, z;] fori = 1,2, 3,
where [z,y] denotes a segment in A with ends = and y. Then u(y1,y2,ys) €
[Cl, u(zly 22, Z?))].

So given any three DS-mechanisms, we construct a new DS-mechanism
using the median operation. We now show how this composition principle
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helps understanding the construction of any DS-mechanisms within a single-
peaked environment.

(3.2.7) Structure of Non-Manipulable Mechanisms. We begin with
the single agent case. In Section 1 we argued that a non-manipulable mecha-
nism 7 is determined by its effective region Z = w(A). This is true whatever
the environment. In this case, the peculiarity is that the set Z is a segment
with respect to the linear structure of A.

Indeed, assume conversely that there exists a point « ¢ Z such that there
are points from Z located to its right and to its left. Assume the point 7 (z)
lies at the right of z, and that there is another point z = 7(z'),2’' € A, lying
at the left of z. Now let R be a single-peaked preference with a bliss point z,
such that zRm(x) (see Fig.3).

u(a)

0
C
O
-
AN

Fig. 3

In this case, the agent is better of not naming his true bliss point x, but the
point z' instead. Contradiction.

Thus we proved that Z is a linear segment. Its ends are obviously m(A)
and m(IT). More generally, 7(z) is the closest point to  in Z. This assertion
can be rephrased more compact as

m(z) = p(r(A), 2, w(I)).

Thus in the single agent case, any non-manipulable mechanism 7 is the
median of the three (non-manipulable) mechanisms: two of them are constant
with outcomes m(A) and w(IT) and one is dictatorial (or identical 7(z) = ).

Now we examine the n agents’ case. Let 7 : AN — A be a non-manipulable
mechanism. Single out agent 1. From the single agent case, for any bundle
Ta\1 € AN\ we have

7T(35733N\1) = H(W(Aal’N\l),ZUl,W(H, CUN\1))-

This means that our mechanism 7 is the median of three mechanisms:
a dictatorial mechanism for agent 1 and two non-manipulable mechanisms
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(A, ") and 7(I1,-) depending on the strategies of n — 1 agents. The previous
considerations hold for both these mechanisms and so on. At the end of all
iterations, the mechanism 7 will be represented as a repeated application
of the median operation to a few dictatorial and constant mechanisms. For
example, in a case of two agents,

m(x1,x2) = wlu(m(A, A), xo, w(A, ), x1, p(n (I, A), zo, w(II, IT))).

The constant mechanisms that appear in this decomposition are given
by the values of the mechanism = for “extremal” profiles, when a section of
participants (a coalition K C N) opts for the right end IT and the remainder
(the coalition K) opts for the left end A. Denote such a profile by (I, Azw)
and set

a(K) = ar(K) = m(Ilg, Ag).

We see that a non-manipulable mechanism is defined uniquely by its fam-
ily of “constants” (a(K)), K C N. This family is not arbitrary; clearly, the
more “at right” the profile the more “at right” the outcome. In other words,
if K C K', then o(K) < a(K'), where < represents the order from the left
to the right in A. Understandably, this is the unique condition on (a(K)).

We sum up this result in the following theorem.

(3.2.8) Theorem. Any non-manipulable (for the single-peaked environ-
ment) mechanism 7 : AN — A can be obtained by applying (iteratively) the
median operation to dictatorial and constant mechanisms.

The mechanism m is then uniquely determined by its values at extremal
profiles. So there exists a bijective correspondence between the set of non-
manipulable mechanisms 7 : AN — A and that of monotone mappings « :
2N — A,

Moulin (1980) gives the following more explicit expression of a mechanism
T 10 terms of the family of constants (a(K)),

Ta(@1, ) = sup [inf {a;, a(K)}].
KCN €K

For example, taking two agents only,
m(x1,22) = sup{a(0),inf(z1, a(1)),inf (22, a(2)), inf (21, 22, a(1,2))}.

Recently, Berga (1998) generalized Moulin’s maxmin formula to the case
of single-plateaued environment.

We make here a few remarks.

First, note that when the set A consists of two alternatives, then any
order on A is single-peaked, and the difference between universal and single-
peaked environments disappears. In particular, this theorem yields the previ-
ously mentioned (1.3.10) result by Monjardet (1978) about representation of
majorities systems through dictatorial families using the median operation.
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The second remark deals with finding out the conditions for which a non-
manipulable mechanism 7 is efficient. It is clear that the following criterion
is true: a mechanism 7 is efficient if and only if 7 (z, ...,x) = x for any z € A,
or when 7(4,...,A) = A, and «(I1,...,II) = II.

Thirdly, in the single-peaked setting, a non-manipulable mechanism is also
coalitionally non-manipulable. In other words, no coalition can improve upon
the outcome for all its members. This is a specific property of single-peaked
environments. Note that the Oil Producing Cartel (OPEC) uses mechanisms
of this type for decision-making when a production level has to be chosen
(Border, Jordan (1983)).

The fourth remark concerns the relation between anonymity and coalition
size. The associated constants «(K) of an anonymous mechanism 7 depend
on | K | only. Thus it suffices to fix n+ 1 constants ag, a1, ..., a, (cp. Example
(2.4)) instead of the 2™ required constants a(K).

Lastly, note that we nowhere made use of the set A’s finiteness. In fact, the
crucial point is that A possess a linear structure. Thus the above-mentioned
results remain valid when A is the real line R. It is slightly inconvenient that
for the real line it is difficult to talk about a left and a right end, but this is
easily rectified by adding formally —oo and +oo to R.

(3.2.9) Generalization on Trees. The replacement of a linear struc-
ture on A by a more general “tree” structure yields yet more interesting
generalizations. Recall that a tree is a connected (non-oriented) graph with-
out cycles. Given two nodes z and y of the tree, we will denote by [z,y] the
minimal connected subgraph in A containing z and y. Intuitively, this is the
shortest path between x and y.

The notion of single-peakedness is readily transferable to trees. A linear
order R is single-peaked if it is single-peaked on any “segment” [z,y] C A.
Else, the further we move from the bliss point a = max R the lower the
agent’s utility; more formally: if = € [a, y] then zRy.

(3.2.10) Example. Suppose that w is a probability measure on the set
of participants N. For any strategy profile zy =(z;), we form a function
p: A— R, pla) =, pla,z;)w(i), where p(a,z;) is the distance (on the
tree) between the node a and the node x;. Suppose, for simplicity, that the
weight w(K') of any coalition K is not equal to 1/2. Then the function p has
a unique minimum; the minimum point is denoted by p(zy). This yields the
mechanism p : AN — A. One can easily prove that the mechanism p is
non-manipulable for the single-peaked environment on the tree A.

The crucial (in our view) property of a tree is that the notion of the
median of three points is well-defined.

(3.2.11) Lemma-definition. For any three nodes z,y,z of a tree, the
intersection [z,y] N [y,z] N [z, ] consists exactly of one node. This node is
called the median and is denoted by p(x,y, z).
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It suffices to look at Fig. 4 to prove this lemma. The unique difference
with respect to the linear case, considered above, is that the median does not
have to coincide with any one of the nodes z,y or z.

xr

T,Y, 2
w(z,y, 2) oy

z

Fig. 4. A tree and the median of the nodes z,y, 2.

As in the linear case, median mechanisms can always be built from any
three mechanisms: m = p(m, w2, 73). The mechanism 7 is non-manipulable as
soon as 71, w2 and w3 are non-manipulable. Here again, any non-manipulable
rule can be obtained from dictatorial and constant rules using median oper-
ations.

The case of a single agent again plays a pivotal role. Let 7 : A — A be
a non-manipulable rule and Z = 7(A4). As in the linear case, it is easy to
establish that Z is a convex subset of A, i.e. [z,y] C Z for any z,y € Z.
Besides, it is obvious that 7 (z) is the closest point to z in Z.

Further we can express this last property through medians, thereby gen-
eralizing the formula 7(x) = p(r(A), z, w(II)) for the linear case. To do so we
need a generalization of the notions of left and right ends, used previously. A
node a of a tree A, is thus called eztremal if A\{a} is still a tree. We denote
by OA the set of extremal points of the tree A. Z = w(A) is obviously the
convex hull of 7(0A).

Now we explain how to express 7(x) in terms of z and of the nodes 7(a),
a € JA. To do so, we start by enumerating arbitrarily all extremal points
0A = {ag,...,an} of A and determine by induction

1 (:L‘) = u(a:, W(a0)> W(al))y

’/TQ(Z’) = /.L(l‘, 1 (:L’), ’/T(a2))7

T () = (@, Tim—1(x), 7(am))-

We assert that 7(z) = 7, (x). This can be seen considering the two fol-
lowing facts. First, the point 7, (2) belongs to any segment [z,7(a;)],j =
0,...,m. This assertion is obtained inductively: for any j the point 7;(x) be-
longs to any segment [z, 7(ao)], ..., [, 7(a;)]. Second, the point 7, (2) belongs
to Z.

Thus 7(z) can be expressed by a somewhat tedious formulation using the
median operation through m(a;) and z. By induction and as in the linear
case, we can figure out a generalization for any number of agents.
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(3.2.12) Theorem. Any non-manipulable rule m : Ay — A on the tree
A can be obtained using the median of some dictatorial and constant rules;
it is uniquely determined by its values for extremal profiles (0A)N.

(3.2.13) We do not give here an explicit formula a la Moulin. But we
provide (without proof) a necessary and sufficient condition on the mapping
7 : (0A)N — A which can be extended to suit a non-manipulable mapping
An — A. The giving of an extremal profile N — A amounts to allocating
(somehow) agents to extremal points. Imagine now that an agent i moves
from an extremal point a to another extremal point a'; how does 7(-) change?
There are two possible cases. In the first, the outcome 7 (a) does not belong to
the segment [a, a]; in this case the outcome does not change, w(a) = w(a’). In
the second, w(a) € [a,a’]; in this case the outcome 7(a') also belongs to [a,a’]
and can move to a'. This condition is a generalization of the monotonicity
requirement of a(K) in Theorem (3.2.8).

A last remark. A tree can be viewed as realizing the idea of a compro-
mise. Extremal alternatives (from 0A) can be considered as basic or initial
non-structured alternatives. Social choice on this set is impossible. However
embedding the set JA into a tree A by adding to A a few compromise
alternatives makes the solving of a social choice problem more satisfactory.
Moreover in some sense we think that we can not do better.

3.3 Linear Environment

(3.3.1) Lotteries.One other way to express the idea of compromise is to take
mixtures of alternatives (in a probabilistic sense) or lotteries. Von Neumann
was the first to propose working not only with “pure” alternatives, but also
with their probability mixtures, launching a tradition which is now firmly an-
chored in the practice of mathematical economics (especially in game theory).
Let A be a finite set of initial “pure” alternatives. A lottery on A is a proba-
bility measure on A, or in other words, a formal combination y = X,capu(a)a,
where all p(a) > 0 and X,eap(a) = 1. Of course, one can devise probability
measures on more general or complex sets (such as, for instance, infinite sets),
but the technical details involved with such constructions would lead us too
far away from our purpose here.

A mechanism, whose outcomes are lotteries on A, can be described as
follows. An alternative from A is determined, through the rolling of a dice (or
for the matter, any more modern probabilities generator), after the collecting
of all agents’ messages s; and the forming of a lottery n(sy) = X,pu(a)a. Here
u(a) is the probability of occurrence of alternative a.

To evaluate the outcomes of this kind of mechanism, the utilities of agents
should be defined on lotteries. Denote by A(A), the set of all lotteries on A;
geometrically, this set can be represented by a (] A| — 1)-dimensional simplex
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whose vertices correspond (one to one) to the elements of A. It is usual to as-
sume that preferences on lotteries satisfy the von Neumann and Morgenstern
axioms and are represented by affine functions u : A(4) — R4 Such a func-
tion is defined by its values for vertices of the simplex A(A), i.e. for elements
of A. Given the numbers u(a),a € A, the “utility” of a lottery p = Yu(a)a
is given by the formula

u(p) = Tacap(a)u(a).

Note that these preferences on A(A) represented by affine functions are not
linear orders, but weak orders. Practically we now have to deal with indiffer-
ence classes, and this brings about quite a few mathematical inconveniencies
(however nothing that can’t be dealt with).

(3.3.2) For most of the material we present in this section, it is inessen-
tial that A(A) be a simplex, but it is important that it be a convex set.
Therefore in this section we shall work with the following set-up. The space
of alternatives is an infinite convex set V' (this is why we do not call it A,
to draw the reader’s attention to the fact that it is infinite). A preference on
V is called affine, if it is represented by an affine utility function on V. The
latter means that u(az + (1 — a)y) = au(z) + (1 — a)u(y) for any z,y € V
and 0 < a < 1. The set of all affine preferences is denoted Af f(V); we call
affine environment the environment Aff(V)".

The definition of strategy—proof mechanisms in an affine environment is
straightforward. As we noted in Section 3.1, “equivalent revealing” direct
mechanisms are not uniquely determined. Nevertheless, in what follows we
shall deal mainly with mechanisms of the following form:

T AffF(V)N = V.

Such mechanisms are called non-manipulable in a affine environment, if the
following inequality is fulfilled,

wi(m(un)) > ui(m(ug, unyi))

for any profile of preferences ux = (u1,...,u,) € Aff(V)N, and any agent
i € N and any u} € Aff(V).We do not distinguish here affine preferences
and their affine representations.

(3-3.3) The affine environment (as the universal environment) possesses
two “trivial” classes of non-manipulable mechanisms. The first one consists
of dictatorial, or, more accurately, unilateral mechanisms. Fix an agent i,
fix some subset Z C V' (an efficiency region) and define a mechanism 7 as
follows,

m(un) € max(u; | Z).

This mechanism depends only on the messages of agent ¢ and indeed, fully
favors him in Z. Obviously, this is a non-manipulable mechanism. Of course,
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the previous formula makes sense if the maximum is attainable. To ensure
this, we assume everywhere that the convex set V has finite dimension, and
the subset Z is compact.

We can already at this point sense an inconvenience due to the presence
of indifference sets. The mechanism 7 is not defined uniquely by the set Z,
which, by the way, we can take as being convex. In fact, the maximum of
m on Z might not be unique. However, multi-valuedness of the maximum
is not generic; in fact, the outcome 7(un) is determined uniquely in most
cases (i.e., for “general” profile uy € Aff(V)N ). It seems that an adequate
formalization is required in order to better understand the whole issue. One
should most probably gather in a single equivalence class all the mechanisms
which differ only with respect to very “specific” profiles. These subtleties are
not essential to the matter under investigation, so we shall not dwell further
upon them.

A second large class of non-manipulable mechanisms in affine environ-
ments consists in affine duple mechanisms. One dimensional convex sets, i.e.,
segments, are the analogue of two element sets in the affine environment.
There are only two affine preferences on the line corresponding to the setting
of two possible directions on this line (if we neglect the “total indifference”
preference). We investigate these mechanisms more in detail.

(3.3.4) One-dimensional Mechanisms. Assume first that V =R (the
real line). The three affine preferences on the real line are represented by the
functions u(z) = z,u(z) = 0,u(z) = —z. We denote them conventionally by
the symbols 4,0, —. A direct mechanism thus takes the form:

7:{=0,+}N = R.

This mechanism is non-manipulable if and only if the mapping 7 is mono-
tone (where — < 0 < + and the order on R is the natural order). We give a
more concrete example.

(3.3.5) Example. Let there be two agents, 7(+,+) = 1 and «(-,-) =0
for all other profiles. This mechanism is non-manipulable and non-unilateral.

Generally, a mechanism 7 : Aff(V)N — V is called one-dimensional or
linear if its image w(Af f(V)™V) lies into some line L C V. Non-manipulability
of a one-dimensional mechanism 7 implies the following property: suppose
that (Ry, ..., R,) is a profile of (affine) preferences, suppose that R} is another
(affine) preference, such that the restrictions of R} and R; to L coincide and
are not such that all elements of L are equivalent, then 7(Ry, ..., R;, ..., Rp) =
7T(R1, ceey R;, ceey Rn)

Thus the construction of general one-dimensional mechanism resembles
that of the mechanism constructed above for V' = R. Namely, given a line
L C V, the set of affine preferences can be divided into three classes. Pref-
erences belong to either class, when their restriction to L yields either one
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of the directions (chosen on the line L) or indifference. We denote, as above,
these classes conventionally by +,—, and class 0. A one-dimensional non-
manipulable mechanism takes the following form:

AffV)N = {—,class 0,4}V S L CV,

where o is a monotone (in a natural sense) mapping.

As above, the main part of the mechanism is given by the mapping
{—,+}N — L, although the latter does not account for the outcomes of the
mechanism for those rare profiles, for which the preferences of some agent
might fall into the class 0.

(3.3.6) Mixing Mechanisms. The above two non-manipulable mecha-
nisms’ classes do not exhaust all non-manipulable mechanisms, for a reason
similar to that cited in (3.2.5). In fact, the convexity of the set V' enables us
to construct new mechanisms by forming convex combinations (or mixtures)
of both alternatives and mechanisms. More exactly, let

ﬂ't:Aff(V)N—)V, teT,

be a finite family of mechanisms and A\; > 0 be real numbers, such that
Y\t = 1. Then one can form a mechanism 7 = X \;m; by formula

W(UN) = Et)\ﬂrt(ut),
which is non-manipulable if all mechanisms 7; are so. Here are two examples.

(3.3.7) Example. Random dictator. Let V' = A(A), i.e. we are in the
lottery setting. We form a rule:

1
T(Upy ey Up) = EieNE max(u; | A).
This amounts to taking the arithmetic mean of dictator rules m;(un) =
maxu; | A (we do not pay attention to possible non-uniqueness of max).
Of course, one could decide to give different weights to participants.
(3.3.8) Example. Analogously, one can take a mixture of duple rules.

For simplicity, we consider the case of one agent and A = {z,y, z}. The rule
m is given by the formula:

w(u) = 3 max(u | {r,y}) + 3 max(u | {y,2}) + 3 max(u | {z, )

This is a non-manipulable unilateral rule whose efficiency region is depicted
in Fig.5.
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T z
Fig. 5. The hexagon Z is the effectivity region.

Of course, when mixing we need not to take only finite convex combina-
tions; we could use, in fact, any arbitrary probability measures on the space
of all non-manipulable mechanisms. We shall not give precise definitions and
only present a simple example.

(3.3.9) Example. Again, there is one agent, V = R? is the euclidean
plane. Given an angle ¢, 0 < ¢ < 27, we denote by 7, a one-dimensional
mechanism, whose efficiency region is the segment I,, whose ends are fixed
at the origin of coordinates 0 and at the point a, = (cos ¢, sin ¢) (see Fig.6).

0

Fig. 6. One-dimensional mechanism with effectivity region I,

The performing of this mechanism is clear enough. Assume, for example, that
the utility w is given by the second coordinate on R2. Then
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_Joa,, i O<ep<m
ﬂ—w(u)_{ 0, if 7m<ep<2nm
Let us construct the mechanism 6 by integrating the mechanisms 6,:
1 27
0=— 0,dp.
2m Jo v
The value of the mechanism 6 for the same utility w is
1 27 1 ™ 1 ™ )
b,(w) = o= [ Bp(w)dp= (o= | cospdp,o— [ sinpdp) = (0,1/m).
2w Jo 2w /o

:27r 0

The efficiency region of the mechanism @ is the disk Z with radius 1/,
this is a consequence of the obvious isotropy property of this mechanism
(Fig.7). The value 6(0) is not determined, though 6(0) € Z.

1/m

Fig. 7. Unilateral mechanism with effectivity region - the circle Z.

One can construct, in an analogous fashion, a number of other non-
manipulable mechanisms, taking different convex combinations (probability
mixtures) of unilateral and/or one-dimensional non-manipulable mechanisms.

In this Section, we make the central conjecture that all non-manipulable
mechanisms can be obtained in this manner.

(3.3.10) Conjecture. Any non-manipulable mechanism (in an affine
environment) is a probability mizture of unilateral and one-dimensional non-
manipulable mechanisms.

This conjecture can be understood as follows: the set M of all non-
manipulable mechanisms is a convex subset in the space F' of all mappings
Aff(V)N — V. The convexity of M is clear from what was explained above,
we argued that a mixture of non-manipulable rules yields a non-manipulable
rule. The convexity of M can also be seen from the following representation
of M as an intersection of half-spaces . We fix n + 1 elements u;,j # i, u;, u}
from Aff(V) and determine a “half-space”
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I(un,up) ={m: AfFV)N =V, wi(m(us, unyg) > wilm(ug, uni))}-

This is a closed set in the topology of pointwise convergence in the space F.
The set M is obviously the intersection of all the “half-spaces” II(uy,u}).
Consider the following two subsets M,, and M, of M. M, is the subset of uni-
lateral non-manipulable mechanisms, and M, is the subset of one-dimensional
non-manipulable mechanisms. Now, our conjecture can be rephrased as fol-
lows

M = conw(M, U M,),

where conv designates the closed convex hull in a topological convex space
F. Proving this conjecture would certainly help in providing a more precise
formulation, however we were not successful in proving it. Nevertheless we
should like to discuss some insights here.

A major difficulty in proving this conjecture is related to issues about
integrals of one-dimensional mechanisms. A one-dimensional mechanism is
an analogue of a linear segment (see Examples (3.3.9) and (3.3.5)). Thus it
is interesting to examine the issue of integrals of linear segments. These in-
tegrals are convex bodies called zonoids (see Bolker (1969)). Unfortunately
the criterion qualifying a zonoid is rather cumbersome to use. There is how-
ever one important case in which things become simpler: this is when we
deal with convex polytopes. Namely, a convex polytope is a zonotope if and
only if all its facets are centrally symmetric. With this we might hope that
the case of mechanisms with finite number of strategies might be easier to
study. And, in fact, this is so. Specifically, Gibbard (1978) showed that if
7 [l;en Si = A(A) is a SP-mechanism with a finite set of strategies S;
,then 7 is a convex combination of finite set of unilateral and one-dimensional
SP-mechanisms.

From this result, Gibbard derives quite an interesting corollary. He shows
that if a non-manipulable mechanism 7 : [[;cn Si — A(A) is efficient, then
it is a probability mixture of dictatorial rules, thus has the following form

T(Ur, .oy ) = i - max(u; | A),

where A\; > 0 and X;\; = 1. Hylland (1980) generalizes this to the case of
an arbitrary strategies set. This assertion about efficiency would easily follow
from the conjecture given above.

The above conjecture was partly confirmed by Barbera et al. (1998). They
proved that any twice continuously differentiable non-manipulable mecha-
nism is a convex combination of unilateral non-manipulable mechanisms.
Note also that Barbera (1977, 1978) describes all anonymous and neutral
SP-mechanisms in the lottery environment.
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3.4 The Transferable Environment. Groves Mechanisms

(3.4.1) Another interesting possibility to attain compromise consists in mak-
ing compensatory transfers, labeled in units of a desirable good (which for
brevity, we call money). Assume that apart from the “basic” alternatives
forming the set A (set within which the choice is made), there is a divisible
and desirable good - money. Then, one might think of some compensation
schemes (by judicious reallocations of money), if ever a switching from one
alternative to another should take place.

The presence of money slightly changes the issue of choice. First instead
of the initial set of alternatives A, we deal with the infinite set 4 x RY.
Elements of this set are bundles of the type (a,t1, ..., t,), where a € A is the
social outcome and t¢; is the monetary tranfer received (or given away) by
agent ¢ € N. One might consider only those transfer bundles (¢1,...,t,) for
which X't; = 0 (or at least X't; < 0). This is indeed reasonable a requirement.
However for the time being we shall not take this constraint into account,
coming back to it in the next Section. Therefore, one can imagine that any
deficit in money (should it occur) is covered at the expense of the mechanism
designer.

Second, we assume that the utility of any bundle (a,t1,...,t,) for agent i
depends only on a and t;. In other words, an agent only cares about the social
outcome and the monetary amount he gets in the deal. Many situations do
not fit into this framework, but this does not make this set-up less interesting.

Lastly, we assume that the preferences of agents, on the set A x R are
given by utility functions of the form:

u(a,t) = v(a) +t,

where v(a) represents the money valuation of the utility of alternative a. It
might seem that we step into the realms of interpersonal utility comparisons
here, but that isn’t the case. It means only that individual indifference curves
on the space A x R result one from another, by a parallel shift along the axis
R. Essentially, the last assumption means that the individuals’ valuations of
alternatives are independent of individual wealth.

(3.4.2) This environment is called transferable or more precisely quasi-
linear. Preferences of agents are given here by valuation functionsv: A -+ R
and run the set V = RA. However, sometimes, we shall consider more re-
stricted environments of the form V; x ... X V,,, where the domains V; are in
V. We now give a few examples of such domains:

a) A is a topological space; the valuations v are continuous functions
satisfying a condition of upperlevel compactness: v=!([a, 00)) is a compact
in A for any a € R. The last condition is satisfied automatically when A is
compact;

b) A is a convex and compact set, functions v are concave;
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c) A =R™, functions v are quadratic concave.

(3.4.3) Typical Issues. Consider the following simple typical choice
issue in a transferable environment: take an object (a picture, a vase or any-
thing similar) and a group of participants, each of them ready to acquire
it. How should one organize the allocation procedure (or auction)? We start
with a simple instance, in which we assume that the reservation price (in
dollars, for example) v of the object is known to everybody. Each agent ¢
evaluates the object, and this valuation wu; is known to him only.

Let us begin with a “naive” auction. Participants send their bids (reflect-
ing their true valuation or not) to a collection center. Those agents whose bids
are such that u; < v, exit the auction. The object is given to some participant
i whose bid is such that u; > v. This participant pays v to the seller. Now
the question is which participant wins the object? It seems that one should
give it to the agent, whose bid u; is highest, otherwise the auction’s outcome
is not Pareto optimal. But if it were so, then it would pay each agent to raise
his bid, increasing with respect to others’ bids. But in fact this would bring
us nowhere. All agents will indulge in lying, and such a game does not have
any Nash equilibrium.

Now let us examine another organisational principle. Assume the agents’
bids are ranked in decreasing order: u; > us > ... > v and assume that again
agent 1, whose bid wu; is highest, wins the object. But now assume that he
pays uito the seller. This seems to be more reasonable a principle. However,
if agent 1 knows the bid us of the (next) agent 2 and if u; > s, then he
would gain by not bidding uy, but us +¢ ,where ¢ is small, and positive. Here
as well, agent 1 has an incentive to lie.

It turns out that one can organize auctions such that all agents find it
profitable to bid “ their true valuation w;” . It suffices to attribute the object
to the agent whose bid is highest (denoted agent 1), but have him pay us
(assuming that us > v) or v (if uz < v ). In this case, the payment of agent
1 does not depend on the valuation w; and it is never profitable for him to
lie. The same argument holds for the other agents. The payment us can be
viewed as a loss that agent 1 bears upon other agents. More exactly, agent
2 bears the totality of the loss, for he would win the object if u; had been
< Uus.

The reader will note here that this auction is only individually non-
manipulable (and differs in this from the mechanisms studied in Section 2).
In fact, agents 1 and 2 (acting together) are able to push the payment as low
as ug dividing the profit us — us.

Next, we complicate the matter slightly. Assume now that the value of the
object (or the seller’s valuation for the object) v is known only to the seller.
For simplicity, we assume that there is only one buyer with valuation u. How
can one organize a non-manipulable auction? In this set-up, an exchange oc-
curs only if u > v and the agreed-upon price p € [v, u] (for the seller has to
get no less than v and the buyer should not pay more than u). Should the
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object be sold at the price p = v, then we understand that the seller might
be tempted, in certain cases and namely when v > v, to pretend that his
valuation v is higher than it is. Should the object be sold at the price p = u,
then the buyer might be interested in pretending that his valuation u is lower
than it actually is. Now if price is equal to (u + v)/2, both will indulge in
lying. In general it is not possible to conceive a non-manipulable exchange
mechanism unless we are ready to accept that the monetary transfer be un-
balanced (see Theorem (3.5.11)). What if we accept unbalanced transfers?
Then we can think of the following mechanism. Assume the seller asks v, the
buyer bids u. When u < v, nothing happens. When u > v the buyer gets the
object and pays v, while the seller receives u. Of course, this trade is possible
only if we bring some additional amount u — v of money in the deal.( This
is called financial or budget unbalancedness.) Where does this money come
from? We do not answer to this yet, but we present later some (albeit not
fully satisfying) explanations.

(3.4.4) We now proceed to a more detailed study of social choice mech-
anisms in quasi-linear environments. Recall that the utilities of agents are
generated by both valuations functions v; : A — R and monetary transfers.
Thus the choice set is A x RY, the set of bundles of the form (a;y, ..., t,). Ac-
cording to the revelation principle, we can restrict ourselves to the studying
of the mechanisms of the following form:

W:HV,'—)AXRN,
iEN

W(Ulv "'7””) = (a(vN); tl(vN)) "')tn(vN))>

where V; are domains in the space V = RA= {v: A — R} of all valuations.
Indeed, for simplicity, we assume both that the set A is finite and that every
Vi = V. A mechanism is non-manipulable if for any vx € [[;cy Vi, for any
agent i € N, and for any valuation v} € V;, the following inequality is satisfied:

vi(a(vn)) +ti(vn) > via(vi, vni)) + ti(vi, o).

Once this definition is posed, we have to answer a crucial question: can
we find non-manipulable mechanisms of this kind? If we can, then how many
of them are there? Surprisingly, we can answer both these questions and even
more we can fully characterize all non-manipulable mechanisms.

More precisely, we shall consider only those mechanisms, which satisfy
an additional weak efficiency condition. A mechanism 7 : Vy — A4 x RV is
weakly efficient if the chosen main alternative a(vy) maximizes the sum of
utilities vy + .... + vy, i.e. if for any vy, ..., v, we have

a(vy) € Arg max(z ;).

iEN
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When the outcome is not weakly efficient, the agents could chose another
alternative and compensate each other in such a way that everybody would
be better off. Note that weak efficiency implies at the same time anonymity
and neutrality with respect to the choice of an alternatives from A. One could
consider more generally the maximization of a function vo + ), 5 vi, where
v is a fixed function (“utility of a phantom”).

A mechanism 7 is efficient if it is weakly efficient and balanced in the
following sense: for any vy,

Z t;(vn) =0 (or shorter : Xt; =0).
ieN

Efficiency is a very desirable property for a mechanism and we discuss it
further in the next Section.

(3.4.5) Groves Mechanisms. We now construct an example of a weakly
efficient non-manipulable mechanism. For that, we fix a selector a* : Vyy — A
of a correspondence vx — Argmax() ;. vi). Then we form a mechanism
7* : Vy — A x R using the following formula

T (on) = (@™ (vn); 1 (UN); s B (0N)),

where

ti(on) = Y vj(a*(vw)).
i#]

In this mechanism, the monetary payoff of agent i is equal to what all
other agents “gain” from accepting the project a*. It is almost obvious from
here, that this mechanism 7* is non-manipulable. Indeed, agent ¢ derives
utility from the alternative a*(vy) and from money, t} (vy), as follows,

ui(vn) = vi(a*(vn)) + 5 (o) = (O vi)(a* (vw)).
ieN
By definition of a*, the sum of valuations v = ),y v; is maximal at the
point a* = a*(vn). So for any other signal v}, his utility is

Ui(v;:UN\i) = U(a*(v;:UN\i)) <wv(a*(vn)) = ui(vn).

This proves the non-manipulability of this mechanism.

One can explain the mechanism 7*’s underlying scheme as follows: the
payoffs of agents are chosen in such a way as to equalize gains of all agents.
The aims of all participants coincide and the difference between individual
and group interests disappears;the group becomes a team in the sense defined
by Hurvicz (1972). And in fact, in the process of investigating the issue of
stimulation in teams, Groves ended up with precisely such a mechanism.
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Let us, however, stress that we have to 'pay a price’ in order to get this
kind of unanimity and unity within the group. This ’price’ is the sum of
the carefully designed (by the organizer of the mechanism) set of financial
compensations. So, an amount covering these expenses has to be provided
externally. Indeed, the total of all monetary compensations of participants is

equal to:
D ti(on) =Y vi(ar(vn))) =
ieN iEN i)
(n— 1)(i€2;vvi)(a* (vn)) = (n — 1)maxv(a),

(where again v = ),y v;). Thus, in order to compensate every agent with
the transfer max4 v one should pump into the system, an amount of money
equal to (n — 1) max4 v. The fact that a mechanism depends on such a con-
dition is not satisfactory.

(3.4.6) Note, the functions v; are determined up to a constant. Adding a
constant to the function v, j # 4, changes the value of transfer ¢ (vy) inde-
pendently of agent i’s messages. More generally, take n functions h;(va;), €
N, (dependent of v; (j # i) but independent of v;), and then, form a new
mechanism 7 as follows

m(vny) = (a*(vN); t1(UN), oy tn(VN)),

where

ti(un) = t; (on) + hi(vwi) = ZW(G* (vn)) + hi(vni),
J#i

This new mechanism differs from the former (7*) only through the mod-
ifications in monetary transfers brought by the functions h;. This kind of
mechanism is called a Groves mechanism. Since h; do not depend on v; (i.e.
are constant for agent i), then using the argument above, one easily proves
the following important theorem.

(3.4.7) Theorem. Groves mechanisms are non-manipulable. W

We prove the converse assertion in the following section. Non-manipulable
mechanisms with different additional properties are constructed by selecting
sets of appropriate functions h;.

(3.4.8) Clark mechanism. To conclude, we discuss an interesting mon-
etary transfer correction procedure (Clark (1971)). Assume agent i is indif-
ferent to all alternatives from A, so that his valuation function v; is equal to 0
(or a constant). Then it seems natural that he should not be levied with any
monetary transfer. One can then propose to normalize functions ¢; as follows:
ti(0,vn\;) = 0. Therefore functions h;(vn;) will be given by the formula
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hi(vn\i) = — Zvj(a'*(O:UN\i))-
i#]
Note that Clark mechanism remains unchanged when adding constants to
the valuations v;.

Let us further develop Clark’s argument. Suppose agent ¢ is indifferent to
all alternatives from A, then the desired outcome will be aj = a*(0,vn\;). If
he sends the message w;, then the outcome is a point a* = a*(w;,v;). At
this point, the other agents j # i experience a loss equal to v;(a*) — v;(a}).
The “loss-causing” agent ¢ is imposed a penalty ¢; equal to >, ;(vj(a®) —
vj(a})), where the penalty is non-positive, as a maximizes ), ; vj- Never-
theless, it is easy to check that this monetary penalty is inferior to what he
gains from going af — a*; this non-monetary gain is equal to v;(a*) — v;(a}),
where v; is his true valuation. Therefore agent i has no incentive to distort his
valuation function v;; the function of a “message” for him consists in moving
the social outcome from the point a} to the point a*, which gives maximum
to his full utility equal to v;(z) + >, (vj(z) —vj(a;)) = v(z)+ constant.

It is worthwhile, once again, to note that the penalty, imposed on agent
i for the loss caused to other agents, does not serve to compensate (even
partially) the loss of other agents. Indeed the “wronged” agents may, in fact,
really never receive this money. The penalty’s role here is to force agent i to
think twice by weighing his gains against his money losses.

We have already shown that in a Clark mechanism all ¢; < 0. Thus, and
this is a peculiarity of this mechanism, it does not require that the organizer
subsidize the mechanism. When agent ¢ does not influence the social outcome
by sending his message v; (i.e. a* = a}), then his transfer is equal to 0. In this
set-up, only those agents who actively influence the selection of the outcome
will be taxed. These agents are called pivotal, or leading. This is why, in the
literature, the Clark mechanism is often called the pivotal mechanism.

3.5 Further Properties of Groves Mechanisms

(3.5.1) Characterization. In the previous Section, we discovered a whole
class of non-manipulable mechanisms set-up in a quasi-linear environment.
Do there exist other non-manipulable mechanisms with nice properties? We
show that, under sufficiently weak assumptions on the environment, all non-
manipulable mechanisms are Groves mechanisms.

Let us start by assuming that the set of projects A is finite and V; =V =
R4, that is any valuations are feasible. Let = : V¥ — A x R be a non-
manipulable weakly efficient mechanism such that a*(vny) €Argmax (D, v vi)
for any profile vy.

(3.5.2) Theorem. Under these assumptions, m is a Groves mechanism.
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Proof. We have to show that for any agent ¢ the function

ti(vi,vn\;) — Z vj(a*(vi, vn\;))

i#j

is independent of v;; then we denote it h;(vyy;). Since in the sequel the
valuations vj, j # i, remain fixed, for brevity we shall not write further vy ;
and we shall denote the function Ei# v; by w. So we should check now that
the function

h(vi) = ti(vi) — w(a*(v;))

is constant. First, note that non-manipulability implies that the monetary
transfer ¢; remains unchanged if the selected project a* does not change.
Assume now that h(v;) = h(v;) + €, where € > 0. We form an auxiliary

valuation v; setting

’

o) = —w(z) +¢/2, if m:a*(vé),
i (@) { —w(x), it z#a*(v;).

Since the function v; +w attains its maximum at the point a*(v;), then
a*(v;) = a*(v;). Thus we have t;(0;) = t;(v;) due to the preceding remark.
Hence,

0i (a* (i) + ti(v;) = —w(a* (v)) + (w(a*(v3)) + h(v;)) =
h(v;) + & = t;(v;) — w(a*(v;)) + & = t;(0;)+ v; (a*(07)) + /2.

Thus when the true valuation is v;, agent i gains by sending the message v;,
which contradicts non-manipulability of 7. B

When A is an arbitrary compact and V; consists of all continuous functions
on A (as well as for many other cases), a slight modification of this argument
does the job. Holmstrom (1979) obtains a more general result:

(3.5.3) Theorem. If all domains V; are convex (as subsets in the space
of functions on A), then every weakly efficient non-manipulable mechanism
is a Groves mechanism.

Note that the requirement of convexity of V; is essential, it can not be
replaced by a requirement of connectedness. We can sense it in a one agent
example with A = [0, 1]. Assume the domain of valuations consists of func-
tions of the form vo(z) = — | £ — a |,a € [0,1]. Clearly, the mechanism
where ¢t = 0 is non-manipulable. However, the mechanism, whose associated
transfer is t(a) = a/2 (where in place of v, the agent calls simply «), is
non-manipulable as well, but is not a Groves mechanism.

These results provide an additional reason to consider only Groves mech-
anisms.
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(3.5.4) Let us make one further comment. In the previous theorems we
assumed mechanisms to be weakly efficient. Replacing this assumption with
the weaker attainability condition (any alternative from A is attained for an
appropriate profile vy), then the following result by Roberts (1979) is true:
there exist a function vg : A — R and a non-zero non-negative weight vector
k = (ki1, ..., ky) such that:

a) a*(vn) €EArgmax(vo + ;e Kivi),

b) kivi(a*(vn) + ti(vw)) = (vo + 22 n Kivi) (@™ (vn)) + hi(vni)-

Roughly speaking, the case is almost similar to that in Groves with two
slight differences: agents are assigned weights k; and a valuation of a “phan-
tom” wp is added. Roberts notes that Gibbard’s theorem (A2.7 of Chapter 1)
can be derived from his result, provided transfers be forbidden, i.e. t; = 0.

(3.5.5) Efficiency. Non-manipulability is not an end per se. However
it is important since it simplifies the strategic behavior of agents and there-
fore enables to predict outcomes as well as to evaluate their efficiency. If
we know the outcome then we can appreciate how well a given mechanism
works and whether it outperforms any other mechanisms. Within the large
list of desirable properties for mechanisms, we discuss here the sole efficiency,
or financial balancedness, property. (Green and Laffont (1979) discuss some
other properties.) Remember (3.4.4) that financial balancedness means

Z ti(’UN) = 0

iEN

for any vy € V. If 3 ;o ti(vn) > 0, then the group must be subsidized
by this amount; the problem is that subsidies are not always available. If
EieN t;(vn) < 0, then the group ends up throwing out money, which obvi-
ously doesn’t please any of its members.

The issue now is: do there exist Groves mechanisms,

T:Vix..xV,—>AxRN,

such that ), n ti(vn) = 07 Let us say at once that balanced Groves mech-
anisms exist only for very special environments. Assume we do not succeed
in nullifying the function ), 5 t;(vn), then we could think of minimizing its
deviation from zero. We shall take deviation from zero here in the “uniform”
sense. We call inefficiency measure of a mechanism 7 the following number,

g(m) = sup | Zti(UN) |-
UNEVN ieN
If e(m) = 0, then the mechanism = is efficient; the smaller () the more

efficient 7. We introduce the following notation:

W(vn) = (n— l)rgleaj( vi(a),
ieN
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where vx = (v1,...,v,) is a valuation profile. The function W : VN — R
depends only on the environment (A4; Vi, ..., V,). The following relation em-
phasizes its role:

> tilon) =W(on) + Y hi(ow),

iEN iEN

or in short, > ;v ti = W + >,y hi. From here we derive an

(3.5.6) Efficiency Criterion. A Groves mechanism 7 : Vy — A x RV
with correction functions hi(vn\;) is efficient if and only if

W(vn)+ > hi(un) = 0.
iEN

(3.5.7) Thus one sees readily that the issue of finding a mechanism with
a small e(r) is closely related to the issue of approximating the function W
of n variables vy, ..., v, by a sum of functions h;, each of which depending on
(n—1) variables. The latter problem being connected with a finite differences
issue. We introduce the following notions.

Take a function f : Vny — R and two points vy, U;v € V. We pose
D(f;UN>UN) = Z (_1)‘K‘f(’UK>UI‘()

KCN
to be the n—th mixed difference. For n = 1, this is equal to f(U’) — f(v); for
n = 2, this is

’ 1

f(v1,03) = f(vg,v2) = fvr,05) + f(v1,02).
Now, on top, we pose

6= sup | D(W;un,vi) |-

vN, VN EVN

The number d depends only on the function W, i.e., on the environment,
and can be understood as a measure of the complexity of a given environment
(A, Vl, aeey Vn)

It is easy to note that for any function h;(vy\;) which does not depend
on the variable v;, the mixed difference D(h;;-,-) is identically equal to zero.
Thus the term Xh; does not influence the mixed difference and we get the
equality:

D(Z ti; ) = D(Wv K ')v
ieN

and prove the following result
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(3.5.8) Theorem. The inequality e(mw) > /2™ holds for every Groves
mechanism .

Indeed,
‘D(W;’UN,’U;V)‘ < ‘D(Zti;UN,v;V)‘ <

< YkcnN ‘Z(_l)uﬂti(vl{;v’f)‘ < 2%(m).
Therefore 6 < 2"e(w). W

(3.5.9) Corollary. If there exists an efficient Groves mechanism then
0 = 0.

Thus, to warrant existence of at least one efficient Groves mechanism,
the environment (A; Vi, ..., V},) has to satisfy quite a stringent requirement.
Namely, for any vy, vy € Vi the following equality (Walker condition) has
to be fulfilled: ’

D(W;vn,vy) =0.

(Below, we shall show that Walker condition suffices to warrant the existence
of an efficient Groves mechanism). We should note that Walker’s condition
obtains very rarely.

(3.5.10) Example. Consider a simple situation, where A consists only
in two alternatives: a “status-quo” 0 and a proposed project 1. We normalize
valuations v as follows v(0) =0, and identify v with the real number v(1).
The space of all valuations is the real line R. The function W : RV — R
takes the following explicit form:

W(z1,....xn) = (n — ) max{0,z1 + ... + zn}.

We now calculate the mixed difference D(W) at points zn = (—n, ..., —n)
and z/y = (1,...,1). W(:rK,a:’I_() = 0 for all “intermediate” points (a:K,a:’I.()
with K # (0. And W (2'y) = n(n—1) is true only at one point, (zg, z/y) = z'y.
Finally

D(Wizn,zy) =n(n—1) #£0.

Thus even in this simple environment, Groves mechanisms are not ef-
ficient. In Appendix 3.A1l, we come back to evaluating () in this simple
environment,.

The same arguments prove the following general result.

(3.5.11) Theorem. Let A be compact, let V; consist of all continuous
functions on A. Then no Groves mechanism can be efficient.

An analogous result was obtained by Walker (1980). More precisely,
Walker showed that if A is an open convex set and V; consists of all strictly
concave functions on A with compact upperlevels, then for almost every pro-
file vx € Vi, the sum ),y ti(vn) is not equal to zero.
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Since efficient mechanisms are extremely rare, we are forced back to the
issue of finding Groves mechanisms with small (7). We now mention a gen-
eral, but a rather weak proposition.

(3.5.12) Theorem. There exists a Groves mechanism T with £(7) < 6.

Proof. Fix a profile v, € V. Then for any vy € Vi, the relation

W(vn) + Z(—l)‘K‘W(U%,vf) = D(W;vR,vn),
K#0

obtains. When K # 0, the functions W (v, vz) are independent of the vari-
ables v;, @ € K. Thus one can think of grouping them to form the functions
hi(vn\;). If we now take a Groves mechanism T with those correction func-
tions h;, we get

> ti(on) = D(W; 0, vn),

iEN
whence e(7) < 5. R

The proof of Theorem (3.5.12) is constructive in the sense that it yields a

mechanism whose inefficiency is “small” enough. However the valuation given
by this theorem is rather coarse (see Appendix 3.A.1). Theorems (3.5.8) and
(3.5.12) provide a useful and simple existence criterion for efficient Groves
mechanisms:

(3.5.13) Criterion. Given the environment (A;Vi,...,V,), there exists
an efficient Groves mechanism if and only if § = 0.

We now give two examples in which we apply this criterion.

(3.5.14) Example. Assume that the preferences of one among the agents
(say, the first) are fixed and known, such that Vi consists of a unique ele-
ment v;. Then, the function W(vy) is tautologically constant on v, and
D(W;-,-) =0, so that 6 = 0 and hence it is possible to have an efficient
Groves mechanism.

This example is not very interesting, for any disbalance is written off at
the expense of the 1st agent. Agent 1 has no discretionary power, therefore
one can impose on him any kind of tax without influencing his incentive
to reveal his true preferences. Of course this follows from our focusing on
non-manipulability and our disregarding important issues such as individual
rationality, fairness, and so on.

(3.5.15) Example. This example is more interesting. Here A = R is the
real line, the space V; consists of “quadratic” valuations functions of the form
Oz — 22 /2, where § € R is a “parameter” (see Fig.8). It is easy to understand
what @ represents: the function #x — /2 attains its maximum precisely at
x = 6. Therefore we will assume that agents simply call their value 6;.
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Fig. 8. Quadratic function with parameter 6.

Let us now express the function W (0, ...,0,). It is easy to see that the
following function

Z v; = Z(G,m - x2/2)(z ;) — nx?/2

iEN iEN iEN

is maximal at the point (3°,6;)/n, and is equal then to (X6;)?/2n. Thus
W (b1, ...,0,) = (n — 1)(X6;)*/2n.

Let us show now that 6 = 0 for n > 3. Let us recall that if W (vy) is an
arbitrary differentiable function, then

"W
D(W;un,vy) = /mdm -+ duy,

where integration is taken on a parallelepiped with opposite vertices at the
points vx and vyy. Thus the condition § = 0 is equivalent to

an7W =0

Ovy...0v,
(Generally ¢ has an upper bound:
oW

6< maxX | —m—
~ on€eVNIOU ... 0vy

H (“diameter” of V;).
iEN

Here the first factor expresses the “local complexity of the environment”,
while the second relates to the “general width of the environment”.)
Let us come back to the quadratic case. Assume that n > 3; then
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o N
(1 +-+6,)*=0.
o6, .06, " )
Hence § = 0, and by the former criterion, there exist efficient Groves mech-
anisms. Moreover one can select one that is anonymous, for which all func-
tions h; are identical. To do so one needs only to decompose explicitly
(61 + -+ +6,)%(n—1)/n into a sum of n “identical” terms, each depending
on On_;. Finally, skipping a lot of cumbersome computations, the monetary
transfers take the form:

o =-""Lg _ oy ! (0 — )2
ti(fn) = on2 (0; — p—i) +2n(n—2)23¢l(03 H—i)”s

where pi_; = 13y ¥jzi6;. In words, agent i:

a) is penalized proportionally to the square of deviation between 6; and
the average value of 6; (of the remaining agents);

b) is rewarded proportionally to the mean square deviation the remaining
agents from p_;.

Groves and Ledyard (1977) use the quadratic environment to construct a
“nice-looking” tax mechanism in an economy with public goods.

(3.5.16) In Example (3.5.15), we assumed that n > 3. When n = 2,
no efficient mechanism exists, for § # 0 (note that the case n = 2 was also
peculiar in Section 2.6). This not by chance, for when n = 2 efficient mecha-
nisms are very rare, which does not mean that there are no such mechanisms
at all. Assume that A = A; x A; and assume that the valuation of agent
i depends only on the projecting of alternatives on A;. Then it is easy to
construct an efficient Groves mechanism, moreover a mechanism for which
t; = 0. However, the construction of such an efficient mechanism rests on the
fact that the environment is degenerate. More exactly, assume that the set of
valuations V; (i = 1,2) includes indifference (v; = 0). Then, if § =0, v; € V}
and vy € V5 have the same maximum. Indeed, by Theorem (3.5.2), we have
D(W;(0,0), (v1,v2)) =0, or max(v; + v2) = maxwv; + maxuvs.

Thus when n = 2, efficiency arises because of coinciding agents’ aims,
when there is no conflict of interests.

(3.5.17) We conclude with two brief remarks. First, there exist non-
manipulable mechanisms and such mechanisms are Groves mechanisms. Sec-
ond, they all are coalitionally manipulable (in-efficiency just means that the
whole coalition is able to manipulate; as evidenced in the case n = 2 stud-
ied above, any group of size 2 is also able to manipulate). Therefore when
discussing coalitional aspects of mechanisms, we should select a weaker equi-
librium concept than that of dominant strategies, and choose, for example,
the strong equilibrium concept, as in Chapter 5.
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3.A1 The Simple Transferable Environment Case

We come back to the simple transferable environment case from Example
(3.5.10), in which A = {0,1}. We shall assume that V; is the segment [—1, 1],
i.e. that 0 < v;(1) < 1. We showed that

Wp(vn) = (n — 1) max{0,v1 + - - - + v, }.
Denote the sum vy + - - -+ v, by v, so
Wy(vy) = (n — 1) max{0,v},v € [-n,n].

Our goal is to estimate the efficiency of Groves mechanisms in such an
environment, as a function of the number of participants n. One can show
that § = §,, depends on n as showed in Table 1.

Table 1.

n|2|3|4|5]6].. n
6n | 2| 3 [12/20]60]..|~2"/n/27

Due to Theorem (3.5.12), we know that there exists a mechanism 7,
whose e(7) & 2"y/n/2r. We show that this estimation is rather coarse and
that one can refine it improving on the efficiency of the mechanism. To this
end, we construct two arrays of more efficient mechanisms .

The construction principle of the first array of mechanisms consists in
approximating the function W, (v) on the segment [—n,n] by a degree n — 1
polynomial P, _;(v). This polynomial is a sum of n—1 variables polynomials,
in which only n — 1 variables appear (thus the monomial v - ... - v, is never
encountered).

We shall approximate not W, but more convenient function 231|v|. It
differs from W), by a linear function. The approximation of the function | v |
by polynomials is a classical problem (see, for example, Dzyadyk (1977))
which we shall not elaborate. In brief, the function W,, can be approximated
by a polynomial of power n — 1 up to the efficiency factor 0, 15n. Thus there
exists a Groves mechanism 7,, with e(#,) ~ 0.15n.

The second array of mechanisms is the now familiar Clark mechanism,
see Section 3.4, which we denote by 7¢. Recall that only those “pivotal”
agents, who influence the social outcome through their messages, are imposed
a transfer. One checks that the number of “pivotal” agents inferior to n/2
and that each pays a money amount < 1. Thus in the case of the Clark
mechanism, the following inequalities | Xt;(vn) |< n/2 and (7)) < n/2
obtain. The Table 2 summarizes these data.
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Table 2.
n 0,/2", i.e. lower (i) | e the bound from
bound for () " n Theorem 5.12
2 .59 .64 1.00 2
3 .38 .96 1.50 3
4 75 1.27 2.00 12
5 62 1.59 2.50 20
6 94 1.91 3.00 60
n>1 \/n/2w .15n n/2 2" /n /2w

Remarking that in a Clark mechanism ¢; < 0,for each ¢, one can reduce
the efficiency factor to n/4. This speaks of the effectiveness of Clark mecha-
nisms. This feature, added to simplicity, speaks in favor of Clark mechanisms.
However we do not know whether the above mechanism is the “absolute best”

3.A2 Acceptable Mechanisms in Transferable Environ-
ment

Non-manipulable mechanisms can be designed in a quasi-linear environment,
but they rarely select efficient outcomes. We can find efficient mechanisms,
however, when and if we accept weakening the equilibrium concept, going
from dominant strategies to, for example, Nash equilibrium concept as in
Chapter 2. More precisely, we shall focus here on mechanisms, whose equi-
librium outcome is Pareto optimal for any quasi-linear preference profile. We
disregard here the existence of equilibrium issue, therefore taking a different
approach from that of Chapter 2. We provide now two acceptable mecha-
nisms. In what follows, A is a finite set (or a compact) and the valuations
functions are continuous.

(3.A2.1) The Walker Mechanism. Take n > 3 agents, arranged
around a circle, so that N = Z/nZ. The strategy spaces S; are the same
as in the direct mechanism case, that is consist of valuations of the form
v: A — R. We obtain an outcome 7*(vy) = (a*(vn);t1(VN), ..., tn(vN)) as
follows:

a*(vn) € Argmax(vy + - - - + vy),
ti(vn) = vip1(a”(vn)) — viei(a”(vn)).

Note that )", t;(vy) = 0 for any vy, implying that this mechanism is
tautologically financially balanced.

We check now that every Nash equilibrium outcome is efficient. Let
vy = (v])ien be a Nash equilibrium for the true valuations v; and assume
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that the outcome, associated to v}, is not efficient, that is that there exists
an alternative a € A and payoffs ¢;,...t, such that >, ¢; = 0 and for any
participant ¢ € N

(a,ti)>=i(a” (vx), ti(vN))-
Every agent i can, by choosing an appropriate valuation v}, force the
outcome to be a, where a = a* (v, v}‘v\i)). Since v} is the array of equilibrium
strategies, we have

(a™(vn), ti(vR) zi(a, ti(vi, v )

By transitivity, (a,ti)>-i(a,ti(vg,v}*v\i)), ie.

ti > ti(vi, ;) = vit1(a) — vi—1(a).

Summing up all these inequalities yields a contradiction: 0 = . #; > 0.

(3.A2.2) The Hurwicz Mechanism. Here n > 2. The agents’ messages
consist in pairs s = (v, «), where v : A — R figures the valuation and « is a
real number. The mechanism is structured as follows. The choice a*(sy) € A
is carried out on the base of the maximization of v; + - - - + vy, so that

a*(sn) € Argmax(z v;).

iEN

The monetary transfers ¢;(sy) take the form

ti(sn) = Cla*(sn)) - (O aj) — (Tjenay)?,
i#£]

where C : A — R is an auxiliary function, denoting the cost of a project.
(This function is more important for the existence of equilibrium than for
optimality issues).

We check that a Nash equilibrium outcome is optimal. Let s% = ((v}, o))
is a Nash equilibrium. Then

L. > ;en @ = 0 because the choice of a; influences only the monetary
transfers ¢; through the term (3, 5 @;)?, which can always be made equal
to zero by any agent.

II. From here, we get that t;(s}) = —a;C(a*(sy)) and ), t;(s}y) = 0.

III. Assume now that the outcome at s} is not optimal, i.e. there is a
better outcome (a;t1, ..., t,) for which ). #; = 0 and for any i € N

(@, ;) »i (a™(sN), ti(sN))-

Again having chosen an appropriate signal s} = (v}, @}) agent i can force
outcome at (s, 37\r\z) to be equal to a. Since s} is an array of equilibrium
messages we have,
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(@"(s¥), ti(sn)) =i (a, —a7C(a))-

So (a,t;) »; (a, —afC(a)), i.e. t; > —afC(a). Summing up these inequalities,
we get a contradiction:

OZZti > —C(a)-Za; =0.

(3

Bibliographic Comments

Dominant strategy mechanisms have been the central focus of the literature
on social choice mechanisms for a number of reasons. First, the mere possi-
bility to yield truthful revelations of participants’ preferences was felt to be
a very attractive feature of mechanisms in general. Investigators were there-
fore curious to know at what price this could be fulfilled. Second, the focus
on dominant strategy mechanisms was connected somehow with an anterior
literature centered around Arrow’s result. Finally, dominant strategy mech-
anisms were interesting because one was often able to describe them fully.

The appeal of DS-mechanisms also stems from practical purposes (see
Green and Laffont (1979)). Take for example incentive theory, which aims at
smoothing differences of interests between a planning (or managing) center
and its subordinated agents. Another practical case in which DS-mechanisms
were felt to be important was that of planned economies. In these economies,
in order to manage ressources efficiently and to establish plans, truthful infor-
mation had to reach the center. The issue was then how to design incentives
such as to reconcile interests of all agents as well as to elicit truthful behaviour
from them.

Hurwicz (1972) was the first to study the incentive compatibility prob-
lem. He showed that it is possible to influence the equilibrium outcome by
either manipulating initial endowments or distorting preferences in a pure ex-
change setting. Farquharson (1969) investigating voting procedures showed
that, to his knowledge, all known voting procedures were manipulable. Gib-
bard (1973) and Satterthwaite (1975) proved this in a general setting (see
Appendix 1.A2). These results were as negative as those of Arrow. By then,
however, Clark (1971) and Groves (1973) had uncovered the existence of
non-manipulable mechanisms in a restricted (quasi-linear) environment (see
Sections 3.4 and 3.5), launching the study of DS-mechanisms.

Gibbard (1973) introduces the revelation principle. The case of the single
agent case was considered by Barbera (1983), Burkov and Enaleev (1985).

As we mentioned above, narrowing the environment brings new and inter-
esting DS-mechanisms. And a classic example is the single-peaked environ-
ment (Section 3.2). Black in 1948 had already noted that in single-peaked en-
vironments, nontrivial rules of aggregating preferences obtain. It so happens
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that these rules can be transformed in non-manipulable social choice rules.
Moulin (1980) provides an exhaustive description of such mechanisms (for lin-
ear structures on A) and see also Border and Jordan (1983). Demange (1982)
generalized these results to trees. Generalization to a multi-dimensional case
is rather difficult (however some results were obtained in the case of euclidean
environment, see Danilov (1988)).

Gibbard (1977) launched the investigation of DS-mechanisms in a lottery
environment (see Section 3). Gibbard (1978) further explored the issue. See
also Barbera (1977, 1978), and Freixas (1984).

Transferable (or quasi-linear) environments elicited great interest as ger-
mane to public goods economies and auction settings. Green and Laffont
(1979) and Groves (1979) offer surveys on this issue. Moulin (1982) has an-
other very interesting survey departing from both DS-mechanisms and quasi-
linear environment set-ups. See also a survey by Afanasiev and Lezina (1982)
and an article by Makowski and Ostroy (1992).

Two interesting topics remain on which we shall not elaborate. The first
concerns dynamic mechanisms. The procedures exposed in Chapters 4 and
5 will give the reader a flavor of the latter mechanisms. Green and Laffont
(1979) develop the issue more thoroughly. The second topic concerns match-
ing and marriage problems (Roth and Sotomayor (1990), S6nmez (1996)) and
related to it, the house market issue (Shapley and Scarf (1971)). Some general
results concerning strategy-proof mechanisms in such models were obtained
by S6nmez (1999).






4. Cores and Stable Blockings

This chapter is devoted to the issue of stable outcomes, that is those outcomes
which are rejected by no coalition of agents. The existence of such outcomes
depends only on the stability of the blocking generated by a given mechanism.
We investigate here stable blocking relations. We begin with a few examples
and give some useful instruments (Section 4.1). In Sections 4.2-4.4 we discuss
three classes of stable blockings: additive blockings, almost additive blockings,
and convex blockings. The main finding is that for almost additive blockings a
family of coalitions which reject alternatives out of the core, can be equipped
with a laminar structure (Theorem (4.4.7)). Section 4.5 reviews a series of
necessary conditions to warrant the stability of a given blocking. In particular,
convexity and almost-additivity turn out to be necessary for the stability of
maximal blockings. In Section 4.6, we develop a veto-procedure in order to
find elements in the core. The procedure yields single-element outcomes for
any maximal convex blocking.

We conclude with three Appendices. Appendix 4.A1 introduces one more
class of stable blockings namely balanced blockings which bear some resem-
blance to Scarf’s balanced cooperative games. Appendix 4.A2 briefly tackles
the issue of blockings with infinite number of alternatives. Appendix 4.A3
provides a proof of the lemma on harems.

4.1 Stable Outcomes

(4.1.1) The two last chapters of this book are devoted to the investigation of
solution concepts which enable agents to unite into coalitions and coordinate
their actions within a coalition. We assume that a necessary condition for
coalition formation is the strict improving of the outcome for all members
of the coalition. A coalition K will reject a given state a only when the
result of joint actions of its members happens to be strictly better than a
for all i € K. Of course, this result will depend not only on the actions of
a “rebelling” coalition K, but also on the reactions of the complementary
coalition K. We will consider in detail only two extreme cases of reactions.
One extreme case is where members of the complementary coalition keep
their previous strategies. We delay investigation of this case until the next
chapter. In the other case, any reaction of the complementary coalition (even
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if it damages the coalition K) is admissible. However, the difference between
these cases is not as great as it may seem, and thus chapters 4 and 5 are
closely related.

We now give more precise definitions. Let 7 : Sy — A be a mechanism,
and Ry be a preference profile. An equilibrium with threats in the game
G(m,Ryn) is a strategy profile sy = (s})ien such that, for any coalition
K and a coalitional strategy sxg € Sk, the complementary coalition has a
strategy (namely, a threat) sz € Sz such that n(sy)Ri7m(sk, si) for some
agent i € K.

Denoting by a = m(s%), the preceding relation can be rephrased as

’/T(SK, Sf) S L(a,RK).

Or alternatively, recalling the definition of a blocking (1.5.2): any coalition K
B-forces the set L(a, Rx). This is equivalent to saying that no coalition K
can block the set L(a, Ri). One can see immediatly that this definition of an
equilibrium outcome with threats depends less on mechanism 7 than on the
blocking B, generated by it. Hence, in this chapter we will deal with blockings
rather than with mechanisms. Let us reformulate in this case the definition of
an equilibrium (or stable) outcome. Although, it is more convenient to state
the conditions for which an outcome is not stable, that is, when there exists
a coalition K which can definitly improve it.

(4.1.2) Definitions. A coalition K rejects an alternative (given a block-
ing B and a preference profile Ry ) if K blocks the set L(a, Rx). An alter-
native which is rejected by no coalition is stable (for the game without side
payments G(B, Ry)). The set of all stable outcomes is called the core and is
denoted by C(B, Rn).

The set of stable outcomes may be empty. Let us consider the following
two examples.

(4.1.3) Example. Take three agents and three alternatives, and assume
that the simple majority rule prevails (see Example (2.1.5)). Let Ry be the
following cyclic profile,

=N Q8
8 0w
wie 8 w0

2

There is no stable outcome in this case and the core is empty. For example,
outcome z is not stable since agents 2 and 3 by concluding an agreement and
calling z can force the outcome to be z, whatever the actions of agent 1.
Moreover z &> z for 2 and 3. Thus z is an unstable outcome, which is rejected
by coalition {2,3}. By the same kind of argument, y is rejected by coalition
{1,3} and z - by coalition {1,2}.
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Identical considerations obtain for the case of the kingmaker mechanism
(see Example (2.1.3)) which generates the same blocking.

(4.1.4) Example. There are three agents and four alternatives. Consider
the following blocking: any coalition of k£ agents is able to block at most &
alternatives. We consider the profile Ry :

Alternative x is rejected by agent 1 or agent 2. Alternative y is rejected by
agent 3. Alternative z is rejected by the coalition {1,2,3}. No coalition rejects
alternative a. So C'(B, Ry) = {a}.

In the case of the profile R below,

the core consists of z, y and z.
We now introduce a useful concept that sometimes helps check the sta-
bility of some alternative a.

(4.1.5) Definition. Assume an alternative a and a profile Ry. A sup-
porting scheme for this alternative is a family of coalitions K (z),z € A\{a},
such that

a) aR;z for any i € K(x), z € A\{a}, i.e. the coalition K(z) consists of
”opponents” of x;

b) K(X) = Uyex K (x) blocks X for any subset X C A\{a}.

(4.1.6) Lemma. If there exists a supporting scheme for alternative a
given the profile Ry, then a € C(B, Ry).

Proof. Take an arbitrary coalition K and pose L = L(a,Rg). If x ¢ L
then > a for all members of K'; thus K (z) and K do not intersect. Therefore
the coalition K (L) does not intersect K, and according to b) it blocks L.
Hence K does not block L and a is stable. B

The complete relation between supporting schemes and blockings is ex-
posed below.

(4.1.7) Lemma. Let B be a blocking. The following two assertions are
equivalent:
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1) for every preference profile there exists a supporting scheme for some
alternative;

2) the blocking B is mazimal and admits stable outcomes for every pref-
erence profile.

Proof. 1) = 2). By virtue of lemma (4.1.6), we need to check the max-
imality of the blocking. Consider the following profile

X
X

=]

K

According to 1) there exists a supporting scheme K for an alternative (de-
noted by a). And assume that a €X . Then according to Definition (4.1.5a)
K(z) C K for any z € X and according to b) K(X)BX. It follows from this
and axiom B1 that KBX.

2) = 1). Let B be maximal and a € C(B,Ry). Consider the family
(K(x), z € A\{a}) with

K(x)={ie€ N,aR;z}.

We check now that this family satisfies the condition b) of Definition (4.1.5).
Let X be a subset of A\{a}; and take the coalition K = K(z). X > a for
all members of K, therefore L(a, Rx) C X. If K(X) does not block X, then,
by maximality, K blocks X and moreover L(a,Rf). This contradicts the
stability of a.H

(4.1.8) Stable Blockings. A blocking B is stable if C(B, Ry) # 0 for
any preference profile Ry € L.

Stability can be understood as consistency (see (1.4.3)) with respect to the
concept of equilibrium with threats. The natural following questions arise: do
stable blockings exist, are there many of them, how can stability be checked,
how do we construct stable blockings? Let us start by examining a few block-
ings, whose stability can be established in an elementary way.

(4.1.9) Example. Oligarchy. Let O C N be a non-empty coalition; we
can always associate to O the following “oligarchic” blocking B: a coalition K
blocks a set X # A if and only if K D O; otherwise it blocks nothing (except
0, see Example (1.5.7)). All in all this means that unanimity should prevail
within the oligarchy O. (Note two particular cases of oligarchy: dictatorship
(O = {i}) and unanimity (O = N).) It is easy to understand that the blocking
is stable. In effect the core here is the set of Pareto optimal outcomes for the
oligarchy O :

C(B, RN) = PG,T(Ro).

This set is always non-empty.
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(4.1.10) Example. Any blocking with two agents is stable. In (1.5.8)
we introduced the notion of individual core to be the set IC'(B, Ry) of those
alternatives a, which are rejected by no agent. Clearly this set is always non-
empty. To compute the core we need however to consider one last coalition,
N = {1, 2}. Therefore,

C(B,RN) = PGT(RN | IC(B,RN))

which is also non-empty.
Identically, if A consist of two alternatives, then any blocking is stable.

(4.1.11) Example. Maskin blocking. There is a blocking with many
agents where the core is given by the formula from Example (4.1.10), i.e.
where the only genuine coalitions are formed by either singletons or the
whole group N. Fix an alternative a. Now form the blocking B for which
every agent blocks any subset X C A, which does not contain a, and for
which the only coalition which is able to block a is the whole group. In this
case, the individual core IC(B, Ry) coincides with the set U(a, Ry) from
Example (1.3.3), and the core

C(B,RN) = PGT(RN | IC(B,RN))
coincides with M (Ry) from Example (1.3.4).

(4.1.12) The Core Correspondence. The core correspondence of the
blocking B,
C(B,): LV = 4,

associates to every profile Ry the core C(B, Ry).

The blocking B is stable when the C(B,-) is non-empty valued. We now
discuss a few useful properties of core correspondences.

1. The core correspondence is monotone (see (1.3.2)). We check that if
a € C(B,Ry) and RYy =, Ry then a € C(B, R)y). Indeed, for any coalition
K we have L(a,R%) D L(a,Rk). Since K does not block L(a, Rx) then
neither does it block L(a, RY).

2. The core correspondence is strictly monotone ((2.3.5)). Due to the
monotonicity of C(B,.) we need only check that for any X C A and i €
N the set Ess;(X) is empty or equal to X. In this case, we can even formu-
late explicitely this set

0 if {i}BX
X otherwise

BEssi(X) = {

Indeed if agent i blocks X then all elements X are i-non-essential and
Ess;(X) = (). From the other side, let z € X be an i—non-essential alter-
native (for C'(B,.)). This means that for the following profile Ry
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X\{z} *
i [ N\

x does not belong to C'(B, Ry), that is x is rejected by some coalition. The
only coalition that can block X in this case is that formed by agent {i}.

3. If B C B' then C(B,-) D C(B',-). This is obvious.

4. Let B be a stable blocking. Then the blocking generated by the corre-
spondence C(B,-) (see (1.5.6)) contains B, B C B¢ (,.).-

Indeed, let K BX. If the coalition K uses a profile R = (X = X) then
given any profile of the complementary coalition, the coalition K rejects all
alternatives from X . Hence C(B, (Rk,*)) C X. This means that K Bo(p,)X.

Core correspondences are interesting tools for the construction of (direct)
mechanisms. Let a blocking B be stable and f : LV — A be a selector from
C(B,"), ie.

f(Bn) € C(B,RN)

for every Ry € LY. Consider f as a direct mechanism. Property 4 implies
that the mechanism f is readily compatible with B in the sense that B C By.
If additionally, the blocking B is maximal, then B = By and stable (so that
f is a core mechanism in the sense (5.4.2)). However when B is non-maximal,
the blocking B can be non-stable.

(4.1.13) Example. We consider again a case with three agents and three
alternatives; the blocking B is generated by an oligarchy O = {2,3}, as in
Example (4.1.9). Assume the selector f takes the following form,

f(RN) = max(Rl | C(B,RN))

Then By coincides with the simple majority rule, which on top is non-stable
(see Example (4.1.3)).

In Theorem (4.5.11) we give a few useful characterizations of stable and
maximal blockings. They are based on various necessary and sufficient stabil-
ity conditions, which we shall elaborate in Sections 4.3 and 4.4. But before-
hand, we wish to familiarize the reader with a few classes of blockings which
will help him through the coming sections.

4.2 Additive Blockings

(4.2.1) We discuss here some possible ways of representating blockings. We
have already seen two of them. The first (and universal) representation is
based on mechanisms (see (1.5.2)). It is not the most convenient though,
because blockings are simpler and coarser objects than mechanisms. And it
seems slightly paradoxical to represent simple things with complex objects.
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The second representation is based on simple games (Example (1.5.7)). Note
that simple games yield very specific power allocations for coalitions: a coali-
tion will be either all powerful or powerless. Such a strong dichotomy in the
degree of power of a coalition often leads to the non-stability of such block-
ings (see Proposition (4.5.2)). We discuss now an alternative representation
which allows for smoother variations in the coalition’s power.

Let p: N - Z, and f : A — Z, be two integral functions. In other
words, we associate a non-negative integer B(z) (the weight of alternative
z) to every alternative z € A and associate a non-negative integer p(i) (the
weight of agent i) to every agent i« € N. We suppose in the sequel that

B(A) > p(N).

(From now on, denote by u(K) = >, u(i) for a coalition K C N, and
analogously S(X) for X C A.)
Define now the blocking B = B, g

KBX & u(K) > B(X).

In other words, a coalition K blocks a set X as soon as the weight of K
is superior or equal to the weight of X. The reader will be easily convinced
that this is really a blocking, that is that axioms B1-B3 are fulfilled. Such
blockings are called additive blockings. Note that neither the weight p nor g
are defined uniquely for a given blocking B, but this is not essential.
The sovereignty property B4 is fulfilled if
B(A) < u(N) + min{5(z)}.

z€A

An additive blocking is maximal if
B(A) = u(N) +1.

Indeed if K does not block X, then u(K) < 8(X). And since both numbers
are integers then u(K) < 5(X) — 1. But then

u(K) = p(N) = p(K) > B(A) =1 - B(X) + 1 = B(X)

and so K blocks X.
Additive blockings, besides the simplicity of their representation, are in-
teresting because they happen to be stable.

(4.2.2) Theorem (Moulin, Peleg). Additive blockings are stable.

Proof. We provide an explicit procedure which yields a stable alternative
for any profile (a more general case is discussed in Section 4.6). Imagine that
every agent ¢ is given u(i) tokens, which he can pile up on alternatives. If
alternative x has received a number of tokens > f(x), it is “propped down”
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and eliminated. One can think of many different rounds by which agents
might distribute their tokens among alternatives. Here we assume that the
first agent has to lay out all his tokens, before the second can do so, and
so on. Of course to do so we have to start by enumerating our agents, N =
{1,2,...,n}.

Agents, in laying out their tokens should be guided by a natural and
simple rule: to lay their next token on their worst alternative among those
that have not yet been eliminated. An alternative x is eliminated as soon
as f(z) tokens are piled up on it. As the last agent lays his tokens, there
will remain some non-eliminated alternatives (since 5(A4) > u(N)). We claim
that anyone of these remaining alternatives lies in the core.

Let us prove it. Let a be a non-eliminated alternative. Given our definition
of a round, every agent i piles his tokens on alternatives ranking worse than
a or on a, i.e. on alternatives from L(a, R;). Indeed he might pile his tokens
on alternatives ranking higher than a only after eliminating a. Suppose now
that some coalition K blocks the set L(a, Rx) so that pu(K) > B(L(a, Rx)).
We have just seen that the coalition K piled its u(K) tokens on alternatives
from L(a, Rk). Since by our assumption u(K) > B(L(a,Rk)), then there
should be no less than B(a) tokens piled on alternative a, which means a
should be eliminated as well. This contradiction proves the assertion and the
theorem.H

(4.2.3) Remark. This procedure underlies the construction of strongly
consistent mechanisms ((5.2.1)), which provide one alternative proof to the
Moulin-Peleg theorem. There are two other proofs of this theorem. The first
one follows from a more general result about the stability of convex blockings
(see (4.4.4) and (4.3.4)). The second one is slightly more intricate and we only
sketch it here. The point is that additive blockings are balanced in the sense
of H. Scarf. And then, by the Scarf theorem, balanced games without side
payments G(B, Ry ) have non-empty cores, see Appendix 4.A1.

Many stable blockings encountered above were additive, but not all of
them. Consider two examples.

(4.2.4) Example. Take the Maskin blocking (from Example (4.1.11))
with a fixed alternative a. Let us show that it is additive, thus stable.

We set the weight of all alternatives & # a to be equal to 1. All agents
are given the same weights, which is equal to m — 1, where m = | A | . The
weight of a is determined from the equation

B(A) = u(N) +1,

B(a) = (n—1)(m—1)+ 1. The reader will easily check that this set of weights
yields precisely the Maskin blocking.

(4.2.5) Example. Assume that N = {1,2,3,4,5,6},and that A consists
of two alternatives. The blocking B is given by the following simple game W.
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A coalition K is a wining coalition if | K |> 4 or | K |= 3 and K = {3, j,k}
where the sum of numbers ¢ + j + k is even. Since 1 + 2+ ... +6 = 21 is
odd the simple game W and the corresponding blocking B are maximal. B
is stable for there are only two alternatives. However one can check that the
blocking is not additive.

We should distinguish two subclasses of additive blockings.

(4.2.6) Peleg blockings. These blockings have the following systems of
weights p and 8 : where p is identically equal to 1 (u(i) = 1 for any i € N)
and

B(A) = u(N) +1=| N | +1.

Peleg blockings are “natural” for | A |<| N | . Their core correspondence
possesses an additional specific property.

(4.2.7) Proposition. If B is a Peleg blocking then its core correspondence
C(B,") is a minimal monotone SCC.

Proof. One should check minimality of C(B,.). To do so, we use Moulin’s
criterion (1.A3.2). We show that for any a € C(B, Ry) there is a profile
Rl =, Ry such that C(B, Ry) = {a}.

We will do it as follows. For = # a, pose

K(z) ={i € N,aR;z}

(i.e. a coalition of “opponents to” z). As it was shown in lemma (4.1.7), for
any set X C A\{a}, the following inequality obtains

| K(X) [> B(X).

These inequalities represent a necessary and sufficient condition in the
“Harems lemma” (see Appendix 4.A3). According to this lemma, we exhibit
subcoalitions IT(x) C K(x),x # a, such that

a) the coalitions IT(z) do not intersect each other;

b) | II(z) |= B(z) for any z # a.

Now we change the preferences of every agent i, belonging to II(z), from
R; to R} having propped = down,

R; = (R; | A\{z},z).

Since aR;x then R ~, R;. Therefore the new profile Ry, = (R}) is a-
equivalent to Rpy. Finally the coalition II(z) rejects z at the profile R’y
hence C(B,RYy) = {a}.l

The following example shows that the Peleg blocking assumption is es-
sential to the result.

(4.2.8) Example. Assume that N = {1,2,3,4}, and take three alter-
natives. We set the weight of every alternative to be equal to 2; u(1) = 2,
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w(2) = u(3) = w(4) = 1. This is a maximal additive blocking. However the
core correspondence C (B, .) is not a minimal monotone SCC. In fact, consider
the profile Ry :

| 4]
The reader will easily be convinced that C(B, Ry) = {z,y}. However, there
exists no profile Ry <, Ry such that C(B,R)) = {z}. One can check it
straightforwardly.

The Peleg blocking belongs to a wider class of anonymous blockings, where
all agents have equal blocking power. Anonymous (not necessarily additive)
blockings are given by a function b : 24 — Z,, where b(z) is the minimal
size of the coalition, which is able to block the set X.

=l Q8
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(4.2.9) Moulin Blockings. They are dual to Peleg blockings, in the
following sense: alternatives and agents change places. More exactly Moulin
blockings are blockings B,, g for which the function 3 is identically equal to
1 (i.e. B(z)f =1 for any alternative x € A) and

| A= B(4) = u(N) + 1.

Moulin blockings are “natural” for | A |>>| N | . They also have a specific
property.

(4.2.10) Proposition. If B is a Moulin blocking, then its core corre-
spondence C(B,.) is a minimal monotone SCC.

The proof ressembles that of Proposition (4.2.7), where one should re-
place “horizontal” blocks (K B{xz}) by “vertical” ones ({i}BX). We again
use Moulin’s criterion. Let a € C(B, Ry); for agent i, pose

X (@) = L(a, Ri)\{a} = {z € A,a »; x}.
Then, for any coalition K C N, we have pu(K) <| X(K) | . Indeed, otherwise
p(EK) 2| X(K) | +1 =| X(K) U{a} |

and K blocks L(a, Rk) = {a} U X (K) that contradicts the stability assump-
tion about a.

Again by the “ Harems lemma”, to every agent i we associate a set Z (i) C
X (i) such that:

a) the sets Z(i) are disjoint for different i;

b) | Z(3) = pli).
We modify again R;, having propped Z(i) down:

R; = (Ri|A\Z (i), Ri| Z()).
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It is clear that R}y ~, Rx. We affirm that C'(B, R%y) = {a}. Every alternative
from Z(i) is rejected by agent i at the profile Ry by virtue of b). Moreover
by a)

1 Z(N) |= 301 20) |= You(i) = n(N) =] 4] -1,

hence Z(N) = A\{a}.

The sole non-rejected alternative is a.l

Moulin blockings belong to the class of neutral blockings. Now we con-
sider a class of blockings (not necessarily additive) which are anonymous and
neutral.

(4.2.11) Anonymous Neutral Blockings. The fulfilling of the relation
KBX depends only on | K | and | X | for anonymous neutral blockings.
Therefore, they can be characterized by its veto-function (see (1.5.8))

v:{0,1,..,n} = Z4,

where v(k) means that a k— member coalition blocks any set of alternatives
of size < v(k). Of course, the function v defines a blocking if the following
two conditions are fulfilled:

1) v(n) <| A

2) if kl + k‘2 S n then U(kl + k2) Z ’U(k‘l) + ’U(k‘2).

It turns out that we can give a very simple stability criterion for these
blockings using a proportional veto-function v*. This function is defined as
follows:

vi(k) = [k [A]/n = 1] = [k |A[/n] -1,

where [t] is the smallest integer superior or equal to ¢. Or in other words,
v*(k) is the greatest integer inferior to & - |A| /n.

Roughly speaking the blocking force of a coalition is proportional to its
size, v*(k) ~ k-|A|/n. We affirm that the blocking associated to v* is
additive. Indeed, let d be the greatest common divisor of n and m = | A |.
The equation

mB =nu+d

has a solution with arbitrarily large natural numbers p and 3. Assume that
(i1, B) is such a solution. Fix agents’ weights to be equal to p and alternative
weights to be equal to 3, then the corresponding blocking coincides with that
generated by v*. This with Theorem 1 yields the stability of v*. Of course,
functions v < v* are also stable. The converse also holds.

(4.2.12) Theorem (Moulin). An anonymous and neutral blocking with
veto-function v is stable if and only if v < v*.

We do not prove this result (the reader should refer to Moulin (1988)),
but we explain briefly in next Section why it is true.
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(4.2.13) This theorem is important one. The proportional veto principle
is based on fairness considerations, it expresses “minority rights”. Coalitions’
power is proportional to their size, whether big or small. However Theorem
(4.2.12) comes as an unexpected support to this principle from the viewpoint
of stability. If we want to allocate power among coalitions (in an anonymous
and neutral way) in order to warrant the existence of stable outcomes, we
end up with the proportional veto principle.

Moulin (1983) opposes the “minority” principle to the “majority” princi-
ple at the core of the Condorcet rule. We illustrate this in two examples.

First example: assume society is divided into two groups K and K of
approximately equal size, where the first is slightly bigger than the second. Let
the preferences inside groups be identical, but assume that they are opposite
in different groups, for example

a>b>c>d- e for agents from K, and
e>d > c> b afor agents from N\K.

According to the majority principle, the outcome will be a. If on the contrary,
we use the minority principle, then the outcome will be the middle alternative
c. Note also that the alternative c is stabler with respect to small changes in
the respective cardinalities of K and K.

Second example: let there be three agents and four alternatives. Take the
following preference profile

In this case, we have a Condorcet winner: alternative a. Nevertheless the
unique stable outcome, for proportional veto, is alternative ¢, though it loses
for pairwise comparisons with any other alternative.

Note also that proportional veto is maximal if and only if the numbers m
and n are coprime.

4.3 Convex Blockings

In this section we consider another stability providing property of blockings.

(4.3.1) Definition. A blocking B is convez if the following property
holds: KlBXl, KQBXQ 1mphes (K1UK2)B(X1UX2) or (K10K2)B(X1 ﬂXz)

We give two example of convex blockings.

(4.3.2) Example. Additive blockings are convex. This can be seen from
the equalities
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p(K1) + p(K2) = p(Kqy U K2) + p(Kqy N K>)

and
B(X1) + B(X2) = B(X1 U Xa) + B(X1 N Xa).

(4.3.3) Example. Let the blocking B be generated by an oligarchy as in
Example (4.1.9). Then obviously B is convex. Conversely, if a convex blocking
is generated by a simple game and | A | > 3, then the simple game is an
oligarchy. We leave it to the reader to check this simple fact.

Notice that both additive blockings and oligarchic blockings are stable.
This suggests that convex blockings are also stable.

(4.3.4) Theorem (Peleg). Convez blockings are stable.

We mention here two possible proofs of this crucial result. The first was
proposed by Peleg (1984), and consisted in using the cooperative game with-
out side payments G(B, Ry ). This game is convex (for a definition of convex
NTU-games, see Vilkov (1977) or Greenberg (1985)); by Vilkov’s theorem its
core is not empty.

The second is more straightforward and operates with alternatives and
blockings. The proof is carried out by induction on the number of agents.
Given a profile Ry we construct a new blocking B’ for the group N' = N\{i}
by eliminating the agent ¢.

(4.3.5) Elimination of an Agent. Assume that this agent is agent 1
without loss of generality. In order to define this new blocking B’, we only
need to know the preferences R; of agent 1. Let L be the maximal lower
contour of Ry which agent 1 can block. That is {1} BL, and if a = min(R; | L)
agent 1 does not block the set L(a,R;) = {a} UL = L*. Let N' = N\{1},
A" = A\L and define the relation B’ between 2V and 24", for K’ ¢ N’ and
X' C A, as follows

K'B'X' & either K'BX' or (K' U{1})B(X'UL").

In other words, the coalition K’ can use the help of agent 1 if it, in its turn,
helps him to block L(a, Ry).

(4.3.6) Lemma. Let B be a convez blocking. Then

a) B' is also a blocking;

b) the blocking B’ is convex;

c) C(B',Rn' | A") C C(B, Rn).

It is easy to see that Theorem (4.3.4) follows from this lemma, since by
inductive assumption the core C'(B', Ry+ | A’) is not empty. The initial step
of the induction is true, since any blocking with one (or even two) agents is
stable. We develop (namely in Section 4.6) this inductive line of reasoning
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into a procedure aimed at selecting stable elements. Theorem (4.3.4) and
Example (4.3.2) yield the Moulin-Peleg theorem (4.2.2).

Proof of the lemma.

a) Axioms B1 and B3 are obvious enough. Thus we merely verify super-
additivity. Let coalitions Kj, Ky C N’ be disjoint and K}BX},j = 1,2; one
should check that (K] U K})B'(X] U X}). Three of the four arising cases are
trivial. We only look at the fourth, namely (K} U {1})B(X;UL"),j = 1,2.
We need to used the convexity of B here. Since (KjU{1})N(KjU{1}) = {1}
and (XJ ULY)N (X, UL*Y) D LT and {1} B L*, we conclude that
(K] UKSU{1})B(X]U X, ULT), ie. (K;UKS))B'(X]UX)).

b) We verify convexity in an analogous way. Let K}B'X],j = 1,2. Again
we have four cases to check but we only check one, where K] BX] and (K, U
{1})B(X,UL™). By convexity of B we have (K{UK},U{1})B(X]UX,UL"),
ie. (KjUKYB'(X] UX}b), or (Kjn(KyuU{1}))B(X] N (X},UL™T). Since
(KN (K, U{1}) = K{ N K} and X; N (X, U L") D> X| N X}, then (K] N
K})B'(X] N X}).

c) Let x € A’ and suppose that it is rejected (for the blocking B) by
some coalition K C N, i.e. KBL(z, Rk). One has to show that z is rejected
for the blocking B'. We consider two cases separately. In the first one, as-
sume that 1 ¢ K. Then K C N’ and since L(z, Rx | A') C L(z, Rg) then
KB'L(z,Rk | A’') and z ¢ C(B',Rn' | A'). In the second case, we assume
that 1 € K. Since z € A’ then L(a,Ry) D L" and so KB(L(z,Ry) U L"). If
we set K' = K — {1} then K'B'L(x, Rg: | A").1

(4.3.7) Who Rejects Unstable Outcomes? Convex blockings possess
one additional interesting property, which was obtained by Demange (1987).

(4.3.8) Theorem (Demange). Let B be a convex blocking and Ry be
a preference profile. Then for any alternative x outside of C(B, Ry), there
exists an alternative a € C(B, Ry) and a coalition K such that

a) aR;x for any i € K,

b) coalition K rejects x.

Thus every unstable alternative is rejected by a coalition of agents who
have a preferred stable alternative.

Proof. Let an alternative x be rejected by a coalition K and K be minimal
among those rejecting x. We show how to find an alternative a € C(B, Ry)
satisfying property a). We use here an argument reminiscent of that used in
the proof of Theorem (4.3.4).

We know that the coalition K blocks the set L(a, R ). Choose some agent
in K, for instance 1, and let L; be the maximal lower contour of R; such
that K blocks L = Ly U L(a, Rk). Let N' = N\K, A’ = A\L and define a
new blocking B’ on the pair (N, A"). To do so, we define a; = min R; | A’
and Z(i) = L(a, R;) for agent 1 € K. Finally, given coalition S C N’ and a
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set X C A', we define as follows: SB'X & there exists a coalition T' C K
such that (SUT)B(X U Z(T)), where as usual Z(T') = Ujer Z(i)-

By the same line of arguments as used in the proof of the previous lemma,
it is easy to check that B’ is a convex blocking. We do not go through the
somewhat tedious computations and check only that N’ B" A’. Conversely,
suppose that N'B' A’ i.e. that (N'UT)B(A'UZ(T)) for some coalition T C K.
We know that K blocks L = A\A'. Thus we conclude both from convexity
of B and axiom B3, that the coalition (N'UT)N K = T blocks the set
(AU Z(T))N (L U L(z, Rk)), which obviously contains L(a, Rr). But this
means that N’ U K blocks A’ U Z(K) = A which contradicts axiom B3.

We established that B’ is a convex blocking. By Theorem (4.3.4), the core
C(B',Rn' | A') is not empty: it contains some alternative a. It is clear that
aR;z for all i € K and it remains to be checked that a € C'(B, Ry). Suppose
the converse, that a is rejected by some coalition S C N. We assert then that
a is rejected (for the blocking B') by a coalition S’ = S\K . This contradicts
the stability of a. In fact, since aR;a; for i € SNK then L(a, R;) D Z(SNK),
ie. S'B'L(a,Rs | A').1

4.4 Almost Additive Blockings

(4.4.1) Let an additive blocking be given by its weights u and 8 as in (4.2.1).
Then it has the following qualitative (or structural) property. Take two coali-
tions K7 and K5 where K7 does not block X, and K5 does not block X,
and assume that X; N X, = (); then K; U K> does not block X; U X5. Indeed,
since K; does not block X; then p(K;) < 8(X;), j = 1,2. Therefore

p(K1 U K) < p(Ky) + p(K2) < B(X1) + B(X2) = (X1 N Xs).

(4.4.2) Definition. A blocking B is almost-additive if K1 BX,, K2BX>

and X1 N XQ = (b 1mply (Kl N KQ)B(Xl N X2)

Note that by monotonicity of the blocking, the coalitions K; and K» in
Definition (4.4.2) can be thought of as being disjoint.

The requirement of almost-additivity hinders the sharp growth of blocking
power when coalitions join. For example, it is easy to check the following fact.
Let K1 U K5 block a set X C A. Then there exist two subsets X1, Xy C X
such that K;BX; for j = 1,2 and X differs from X; U X5 by not more than
one element.

(4.4.3) Lemma. Any almost-additive blocking is convex.

Proof. Let K;BX; and K>BXs but K; N K5 does not block X; N Xs.
By almost-additivity of B the coalition K;\(K; N K>) blocks X7\ (X1 N X>).
Then by superadditivity (axiom B2) coalition KyU(K1\K2) = K1 UK, blocks
X, U(X\X2) =X, UXo. W
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Lemma (4.4.3) and Theorem (4.3.4) yield the following corollary.

(4.4.4) Corollary. Any almost-additive blocking is stable.

Unlike general stable blockings, almost-additive blockings have a addi-
tional feature, namely that blocking coalitions can be arranged in a “nested
structure”. We now define this idea, but first introduce the useful (especially
for Sections 5.4 and 5.5) notion of elimination scheme.

(4.4.5) Definition. Let B be a fixed blocking. An elimination scheme
for a set X C A is a mapping K : X — 2V which satisfies two conditions:

C1. For any z,z’' € X either K(z) N K(z') = 0 or K(z) C K(z'), or
K(z") C K(z).

C2. Every coalition K (z), z € X, blocks the set {y € X, K(y) C K(z)}.

An elimination scheme can thus be thought of as a way to allocate the
tasks of blocking alternatives from X among coalitions. Given an alternative
x, the coalition K (z) will be responsible for ensuring the blocking of z. This
coalition not only blocks z, but also helps reinforce the blocking power of all
coalitions which include it (according to the hierarchy principle enclosed in
condition C1).

The following lemma, formulates a few useful properties of elimination
schemes.

(4.4.6) Lemma. Let K be an eliminating scheme for a set X, and Y be
a subset of X. Then K |Y is an eliminating scheme for Y and the coalition
K(Y) =Uyey K(y) blocks Y.

Proof. The first assertion is obvious. In order to check the second, one
can take Y = X. Choose among the coalitions K (z), x € X, those that are
maximal by inclusion and call them Kj, ..., K. Obviously K(X)=K;U...U
K,. By C1 the coalitions K1, ..., K. are pairwise disjoint. So by B2 and C2,
the coalition K (X) blocks Ly U ...U L,, where L; = {z € X, K(z) C K;}.
Since every alternative z € X lies into one of the L;, then K (X) blocks X.
|

We return to almost-additive blockings.

(4.4.7) Theorem. Let B be an almost-additive blocking, Ry € LY, and
X C A. Assume that for every x € X there is a coalition S(z) rejecting x.
Then there exists an elimination scheme K : X — 2N such that K(z) C S(x)
for any x € X.

Proof. We proceed by induction on the number of alternatives | A |. The
case | A |= 1 is obvious. For convenience, we partition the proof into several
steps.

Step 1. For i € N, let us denote X; = {z € X,i € S(z)}. Now define
the new profile RYy by setting R: = (R; | X, Ri | X;), i.e. where the sets X;
are being propped down for the preferences R;. As before the coalitions S(z)
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reject x at the profile Rl since L(m,R’S(I)) C L(x, Rs(z)). In replacing Ry
by Ry we may assume that min R; € X; for every i € S(x).

Step 2. If X = (), the assertion in the theorem is trivial. Otherwise, take
some ¢ € X and for every y € A define the following coalitions

II(y) ={i € S(z),min R; = y}.

Let Y = {y € A II(y) # 0}; according to step 1, ¥ C X. Clearly
Y C L(x,Rs(,)), therefore coalition S(z) = UyeyII(y) blocks Y. Since
the coalitions IT(y) are disjoint and B is almost-additive, we conclude that
II(y)B{y} for some y € Y.

Step 3. Take an alternative y € Y such that IT(y)B{y}. By step 1, II(y) C
S(y). We denote by Ky the minimal subcoalition in I7(y), which still blocks
y. We may assume that S(y) = Ky shrinking S(y) if needed.

As for the remaining coalitions S(z), we can assume them to be minimal
with respect to the fulfilling of the property S(z) BL(z, Rs(,)) shrinking them
(if needed). Then the following “absorption” property obtains:

if KoNS(z) # 0 then Ko C S(z).

Indeed, let K' = K() N S(ZE), S = S(ZU)\KO Then L(SE,Rs(z)) =
L(z,Rg/) U L(z,Rs') D {y} U L(z,Rs).By step 1, y ¢ L(z,Rs'). There-
fore the coalition S(z) = K'U S’ blocks {y} U L(z, Rs). By minimality of
S(z), coalition S’ does not block L(z, Rs/). Thus due to almost-additivity,
we conclude that K’ blocks y, that is K’ = Ky and hence Ky C S(x).

Step 4. We can assume that the following property holds: the preferences
of all agents in Ky are identical and equal to some preference Ry. Indeed,
let Ry be the preference of some agent in Ky. Let us denote by R/ the new
profile, in which we set the preferences of all agents in Ky equal to Ry. We
affirm that S(a:)BL(:v,R’S(I)) as well, for any # € X. This is trivial when
S(x) and Kg do not intersect. If Ko N S(x) # (), then Ko C S(zx) by step 3.

Step 5. We can consider reducing coalition Ky to an individual agent. And
we shall assume that coalition Ky consists of the single agent 0.

Step 6. Now we replace A by A’ = A\{y} (reminding that y = min Ry).
The new blocking B’ on the pair (N, A") is given by the following formula
where S C N and Z C A’ :

SBZ Jif 0¢ S,
SB(ZU{y}) ,if 0€S.

It is easy to check that B’ is an almost-additive blocking. A’ is smaller
than A, therefore, by induction statment applyed to X' = X\{y} C A’, there
exists an elimination scheme K : X' — 2% such that K(z') C S(z') for any
z' € X'. Clearly we obtain an elimination scheme for X = X'U {y} provided
we add K (y) = K to the previous scheme. B

SB'7Z & {
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This Theorem yields another yet proof of the stability of almost-additive
blockings. Indeed, let us suppose that the core of an almost-additive blocking
is empty for some profile. Then the above Theorem states that there exists
an elimination scheme for the whole set A; however by lemma (4.4.6) some
coalition blocks the whole set A, which contradicts axiom B3. This construc-
tive proof of the theorem can be transformed in a procedure aimed at finding
an element from the core (see (5.5.2)).

(4.4.8) Corollary. Let B be an almost-additive blocking, Ry € LY, and
X = A\C(B,Ry). Then there ezists an elimination scheme K : X — 2N
consistent with the profile Ry in the following sense: for every x € X one can
exhibit an alternative a, € C(B, Ry) such that a, R;x for every i € K(z).

Proof. We showed in Lemma (4.4.3) that B is convex. Hence according
to Demange’s Theorem (4.3.8) for every alternative € X, there exists a
coalition S(z) and an alternative a, € C(B,Ry) such that S(z) rejects x
and az R;x, for all ¢ € S(x). It then suffices to extract the scheme K, which
exists as a sequel of the Theorem seen above.ll

4.5 Necessary Stability Conditions

(4.5.1) In the three previous sections, we established sufficient conditions for
stability. And in fact, we found three major classes of stable blockings:

{additive} C {almost additive} C {convex}.

Now we discuss a few necessary conditions. In essence, these conditions state
that a blocking is not stable if there are “too many” powerful coalitions. In
such cases, non-stability is established by exhibiting a profile Ry for which
the core C(B,Ry) is empty. Let us return to Example (4.1.3), in which
we described a cyclic preference profile leading to an empty core. We can
generalize this example. Assume the following partitions of N = K; UKL K3
and of A = X; U X, U X3, and assume that K; L K5 blocks X7 U X5, Ko LU K3
blocks X> LI X3 and K7 U K3 blocks X; LI X3. Consider the following “cyclic”
profile Ry :

X | X3 | Xy

Xz | Xi | Xy

X1 | Xo | X3
| K1 [ K> | Ks |

Its core is empty. Indeed, the coalition K; LI K5 rejects any outcome from X7,
K> U K3 rejects Xo, and K7 U K3 rejects X3.

We call the corresponding necessary stability condition, the 3-cycle con-
dition. The previous argument can be generalized.
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(4.5.2) Proposition. Let B be a stable blocking. Suppose that we have
an integer m > 0, some partitions N = K; U ... U Ky, A =X U...UX,,,
and a mapping r : {1,....,m} — {0, ...,m—1}. Then for some j the coalition
K; U...U Kj ;) does not block the set X; U ..U X; ;) (where j + k is
computed modulo m).

Proof. Suppose the converse, that is every coalition Kj; LI ... U K,
blocks the set X; U ... U X;, ;. Consider the following profile,

X, Xz | - X,
X | X1 | - | X1
X, Xy | --- X

RS

Its core is empty. Indeed, let us take an alternative z; it belongs to some
Xj. Then the coalition K = K; U...U K, ;) rejects z, since L(z, RK;_) C
X;u..u X]-+T(]-)..

Note that for » = 0 the condition, mentioned in Proposition (4.5.2), re-
duces to the basic property of blockings seen in (1.5.3). Thus the complete
set of conditions in Proposition (4.5.2) can be viewed as a generalization of
this basic property. However, it might not suffice to warrant stability.

One can establish in a similar way the second assertion in Moulin’s theo-
rem (4.2.12) about neutral anonymous blockings, namely if v is not less than
v* then v is unstable. Let us enumerate the alternatives in A = {z;,..., ., }.
Now consider a “cyclic” profile, in which agent i's least preferred alternative
is labelled [im/n] and (generally agent i’s r-th less preferred alternative is
labelled [im/n] — r 4+ 1). For example, for n = 6,and m = 4, this profile has
the following form,

Suppose now that for some k,1 < k < n, we have v(k) > v*(k) = [km/m]—1,
i.e. v(k) > [km/n]. Then each alternative is rejected by a suitable coalition
composed with k& successive agents. In the previous example, suppose that
v(4) > [4 x 4/6] = 3, i.e., each four agent coalition blocks at most three
alternatives. Then 1 is rejected by the coalition {1,2, 3,4}, x5 is rejected by
the coalition {2, 3,4, 5}, z3 is rejected by the coalition {4,5,6,1} and x4 - by
the coalition {5,6,1,2}.

For a generalisation of this construction procedure of “cyclic” profiles
brought by a notion of acyclic blocking, (see Danilov and Sotskov (1987a),
Keiding (1985), Abdou (1987)). However we shall not detail this issue here
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and consider only a particular case, in which we generate a blocking from a
simple game.

(4.5.3) Simple Games. In (1.5.7), we constructed a blocking By from
a given simple game W C 2V. A numerical characteristic of W, namely the
Nakamura number, plays an important role with respect to the stability of
By . We now give a definition of this number, which differs slightly (by one
unit) from the usual one.

(4.5.4) Definition. The Nakamura number of a simple game W is the
greatest integer v(W) (or infinity) such that any number v(W) of “winning”
coalitions have a non-empty intersection.

(4.5.5) Proposition. A blocking Bw is stable if and only ifv(W) >| A|.

Proof. Necessity. Let us enumerate the alternatives in A = {zy, ...,z }.
Assume that the m winning coalitions Sy, ..., S;, have an empty intersection.
For every agent ¢ € N, let ;41 P;x; if ¢ € S;. We claim that the relations P;
are acyclic. Indeed, if a cycle is to arise here, it should look like

l‘mPi:L‘m,1 PZPZI‘l.PZ:L‘m

However this would mean that agent ¢ belongs to every S;, which contradicts
the assumption S1N...NS,, = 0. Thus P; are acyclic. Now extend the relations
P; to linear orders R;. We affirm that the core C'(B, Ry) is empty. Indeed,
every alternative z; is rejected by the coalition S; since x4 is preferred to
z; for all members of S; and S; is a winning coalition.

Sufficiency. Let v(W) >| A | . If the core is empty, then for every alter-
native © € A there is an alternative 2’ and a coalition K (x) € W, such that
z' »; x for all i € K(z). But N, K(z) is non empty by assumption. Let agent
i belong to every K(z) and £ = max R;. Then no alternative z' is strictly
preferred to z for agent i. The Proposition is thus proved by contradiction.ll

We now state a few consequences of this proposition.

(4.5.6) Corollary. If a blocking By is stable for any number of alterna-
tives then v(W) = oco.

In other words, the simple game W is weaker than some oligarchy.ll

(4.5.7) Corollary. Let |A| > 3, and assume that the blocking Bw is
stable and mazimal. Then the game W is dictatorial.

Indeed, in this case v(W) > |A| > 3. Therefore any three winning coali-
tions intersect. So if K,K' € W then KN K' ¢ W and from maximality
KN K' € W. To conclude apply lemma (1.3.5). B

(4.5.8) Corollary. Let m be an acceptable mechanism (see (2.6.1)), and
| A |> 3. If the blocking B is stable and mazimal, then the mechanism m is
dictatorial.
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Proof. According to Dutta’s corollary (2.6.4), B, is given by a simple
game. Thus as a consequence of the previous corollary, there exists a dictator.
|

(4.5.9) Maximal Stable Blockings. Neither convexity nor almost-
additivity are necessary for stability. However for maximal blockings these
properties are equivalent to the stability. We present here several different
equivalent descriptions of maximal and stable blockings as these types of
blockings are important (and will appear so in the Chapter 5).

(4.5.10) Definition. A blocking B is supermazimal if for any partitions
N =K, U..UK,, A= X;U...UX,,, where m > 2, there exists j € {1,...,m}
such that K;BX;.

For m = 2 this definition merely expresses the maximality condition.

(4.5.11) Theorem. Given a blocking B, the following conditions are
equivalent:

1) B is mazimal and stable;

2) B is mazimal and satisfies the 3-cycle condition;

3) B is mazimal and almost-additive,

4) B is mazimal and convex;

5) B is supermazimal;

6) for any profile there exists a supporting scheme for some alternative.

In (5.3.8), we will show that these conditions are also equivalent to the
following: the blocking B is generated by a strongly consistent mechanism.

Proof. 1) = 2). As we saw in (4.5.1), the 3-cycle condition is a necessary
condition for stability.

2) = 3). Let K; B X1,K> B X» and X; N Xy = (. One must check that

(K1 U K3)B(X; U X5). We can assume that K3 N Ky = (. We form K3 =
K1 UKQ and X3 :X1 ﬁXQ. ThenN:Kll_IKQI_IK3 5 A:X1|_|X2 |_|X3.
By maximality K, = K, U K3 blocks X; = X5 U X3, analogously K; U K3
blocks X; U X3. But then, by the 3-cycle condition, K7 LI K> does not block
X1 U X,

3) = 4) is established in Lemma (4.4.3).

4) = 1) is true according to Theorem (4.3.4).

3) = 5).Let N=K;U..UK,, A=X;U..UX,, be partitions of N
and A, m > 2. Suppose that K; B X; for j = 1,...,m — 1. Then due to
almost-additivity K; U...U K,, 1 does not block X; U...U X,,, 1. K, blocks
X, for the blocking is maximal.

5) = 3). Maximality is a particular case of supermaximality for m = 2.
Almost-additivity is a particular case of supermaximality for m = 3. Indeed, if
K1§X1 and KQEXQ then Kl U K2 blocks X1 U XQ whence (Kl UKQ)F(Xl @]
Xs).

6) = 1) by Lemma (4.1.7). B



132 4. Cores and Stable Blockings

The previous theorem enables us to state that there exist strong coalitions.
For example, consider the following assertion.

(4.5.12) Corollary. Let B be supermazimal and | N |<| A | . Then there
exists at least one agent which can block some alternative.

Actually, we can even prove a stronger assertion: there exist a coalition K
and a set X C A such that | K | + | X |>| A | and every agent in K blocks
any single alternative picked in X.

Proof. Assume the converse: that is, assume that for any coalition K we
can exhibit a set X, such that | X |>| K |, and for any alternative z € X,
there exists an agent 7 € K, who is unable to block z. Then by the Marriage
Lemma (4.A3) there is an injective mapping ¢ : N — A such that no agent
i blocks the alternative (). But this contradicts supermaximality. Bl

In Maskin (1979), the assertion of this Corollary was formulated with-
out the assumption |[N| < |A]. But the assertion does not hold unless the
assumption is fulfilled.

Using similar arguments, we can show that if |A| > m|N| then some agent
will be able to block sets of size m.

4.6 Veto as a Decision-making Procedure

(4.6.1) Veto-procedures. How can agents select “nice” outcomes by work-
ing out the possibilities offered by a given blocking? The idea of veto-
procedures expresses the following type of group behaviour. Take a group
of agents IV, assume a given blocking B and a preference profile Ry. In a
veto-procedure, the first task of participants, as rational agents, is to block
their worse alternatives. To this end, they may join in coalitions. Indeed,
by joining a coalition, agents might benefit from a more decisive blocking
power than by staying alone and may be able to eliminate their “worse” al-
ternatives. (A discarded alternative does not receive further consideration.)
Suppose that at some point in time, every agent ¢ € N has been able to
eliminate (by participating to appropriate blocking coalitions) a set of alter-
natives M;. Of course every agent ¢ might want next to eliminate his worst
alternative a; = min R; | (A\My) (here My = U;M;) among the alterna-
tives that remain. Then agents will try to form a coalition K, which would
be capable of blocking the set My = Ujex (M; U {a;}). Every agent in K
is interested in blocking this set of alternatives in the following sense: the
complementary set of alternatives to Mj, (if it is not empty) is then strictly
preferred for every i € K to the set M; U {a;}. Suppose coalitions can be
formed to block Mj,. Then take one of them and denote it for simplicity K;
it discards its alternatives a;. The procedure is iterized, starting with the set
of eliminated alternatives M = M; U {a;} for i € K and M] = M, for
i ¢ K. An outcome of this procedure is the set of alternatives that are non
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discarded when it becomes impossible to form any coalitions K. An outcome,
obtained through this successive elimination procedure, starting with empty
sets M;, is a veto-outcome or outcome of the successive veto procedure.

(4.6.2) Proposition. Veto-outcomes lie in the core.

Proof. Take a given B, a profile Ry,and a veto-outcome C = A\My.
Suppose that a € C\C(B, Ry). Then there exists a coalition K C N which
blocks the set L(a, Rk). Since (M; U {a;}) C L(a, R;), for any i, (where
a; = minR; | (A\My)), then by Bl the coalition K blocks also Mj, =
Uier (M; U {a;}). This contradicts the definition of a veto-outcome.l

To warrant the non-emptyness of the veto-outcome set, we have to re-
strict both the class of blockings we consider and define a stricter elimination
procedure. We consider the following veto-procedure.

(4.6.3) Veto-procedure. For each agent i, at each step ¢, define the set
M} to be the set of discarded at time ¢ alternatives such that either M} =
M!=" or M} = M!7' U {al} where a! = min R; | A\ML'. The following
requirements are to be fulfilled in order to expand the sets Mfl :

a) the coalition K; = {i € N, M{ # M!™'} # 0 and blocks the set
M, = Uiek, Mj;

b) the coalition K, is minimal, i.e. K C K;, KBM! = K = K.

If such a sequence of sets M* = (M}) starting from MY = () can not be
pursued further after some ¢ = T is reached, then the set C' = A\MZ is an
outcome of the veto-procedure. (Obviously this is a veto-outcome.)

(4.6.4) Example. Let N = {1,2,3}, A = {a,b,c}. Take the following
blocking, where {1,2}B{a,b}, {2,3}B{b,c}, {2}B{b} and all the relations
derived from B1 obtain. The profile Ry has the form

=l o0
NS O
wlo o

The veto-procedure yields here a unique sequence M! = (M}) : M! =
(o, {b},@), M? = ({a}, {a,b},@); C = {c} =C(B, Rn).

(Note here that if we do not satisfy condition b), then by starting,
for example, with M! = (0,{b},{c}) we shall have to pursue with M? =

({a},{a,b},{c}) and C' =0).

(4.6.5) Theorem. The veto-procedure always gives a non-empty outcome
for convex blockings.

Proof. Let B be a convex blocking, Ry be a preference profile, and let the
sequences Mt K;, t = 1,...,T, be constructed following the above described
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veto-procedure. We prove by induction that (UtT:1 K,;)BMY for every t.
Suppose that for some s, 1 < s < t, (UI::s KT)B(UtT:S MF ) . We check that

(U KB ME). (4.1)

We denote by S = K, 1N (Ui, K;), X = M n(Us, ML) . If
S = () then the relation (4.1) is true according to the first step of induction
and axiom B2. If § = K,_; then X = My ' and the relation (4.1) is
fulfilled again due to the first step of induction. Let S C Ks_1, S # K;_1.
Since X O U;eg M{™", then SBX by minimality of K,_; and the axiom B1.
Then the convexity of B gives the relation (4.1). For s=2 and t=T we have

T T
(U KB Mk.).

T=1

By virtue of axioms B1 and B3, M% = (UZ’:1 Mp ) # A le. C =AML #
f.m

The convexity requirement is essential to this theorem. Indeed, take the
blocking of Example (4.6.4) and remove from its definition the relation
{2} B{b}. This blocking is already non-convex, but being weaker than the
original, it remains stable. However the veto-procedure ends up in discarding
A in its entirety, if it starts with M = (0, {b}, {c}).

(4.6.6) Single-Element Outcomes. The set of veto-outcomes might
contain more than one element. This is the case when the blocking is “weak”.
For example if B = () then the set of veto-outcomes is equal to A. This is, obvi-
ously, not very convenient, because choosing among these elements can bring
conflict. In order to prevent multiple outcomes, we will work with maximal
blockings. Moreover, we need to modify slightly the elimination procedure de-
scribed earlier . (Generally speaking, we state our elimination rules according
to definite requirements on outcomes: the stricter they are, the greater the
coordination required from participants (see procedure I12 in (5.5.2)).) We
shall propose here one of the possible variants. Assume that a coalition K}
may eliminate only one alternative a® among those being proposed af,i € K.
( One can imagine, for example, that this coalition chooses a representative,
who in turn declares which alternative is to be discarded.)

(4.6.7) The Veto*-procedure is as follows: at every step t = 1,..., T,
a minimal coalition K; discards the “worse” alternative a! of one of its
members; that is

a) K; is not empty and blocks the set M}, = Ujck, M}, where M} =
M7t u{at} if a® = min R; | A\ML !, and M} = M} otherwise;

b) K; is a minimal coalition satisfying a).
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If such a sequence M? (starting from M? = (}) can not be pursued further
than some 7', then the outcome of the veto*-procedure is the set C' = A\MZ.

As it is proved in Proposition (4.6.2) and Theorem (4.6.5), a veto*-
outcome is a subset of the core; it is non-empty for convex blockings.

(4.6.8) Theorem. The veto*-procedure yields a single-element outcome
for every preference profile if and only if the blocking is supermazimal.

In order to prove sufficiency, we use the following lemma.

(4.6.9) Lemma. Let B be an almost-additive blocking, and Rn be a
profile. Let (M, K}),t = 1,2, ... be a veto*-procedure sequence for the profile
Ry. Then either K; C K;, or K N K; =0 for any 7 < t.

Proof. The proof is by induction on 7. Denote by
K. = K- mKt: K = Kt\K‘ra M = M[T(,,_ta M, = M;(h_: T <t.

We verify the assertion for 7 = 1. Suppose it is not true, i.e. K1 N Ky £ 0
and K is not a subset of K;. By minimality of the coalitions K; and K;, we
have K1, BM;, K41 BMy, . By construction My, N My, = 0 (all agents i ¢ K
stop taking alternative a', blocked by K7, into consideration). Now we make
use of the almost-additivity of B. We get (K14 U K1) B(My; U Myp). Here
K UKy = Ky and My, UMy, C M, . Hence, by axiom BI, KtEM;Q which
contradicts the definition of the procedure. Thus, for 7 = 1, the result is true.

Now we verify the assertion for an arbitrary 7 < ¢. Suppose it is not true,
ie. K,NK; # () and K is not a subset of K;. Again by the minimality of both
coalitions K, and Ky, we get K,;BM_, and Ky, BM,_. We assert that M, ;N
M, = (. Indeed, suppose that z € M,; N M;,. Then x = a®, for some s < 7
and K is not a subset of K., KsNK, # (). But this contradicts the inductive
assumption. Almost-additivity gives us as previously that K;B(M,; U M;,),
and consequently K;BM. which is impossible.

This lemma states that for every preference profile, the veto*-procedure
yields an elimination scheme of the set {a!,...,a’}. Therefore pose K (a') =
K; by the previous Lemma, if coalition K; intersects anyone of the follow-
ing coalitions K1, ..., Ky then it contains it entirely. This feature eases the
finding of coalitions K;. In fact, the procedure can and should be pursued
as long as we are left with more than one alternative. The reader can easily
check this assertion making use of the almost-additivity and maximality of
the blocking. We do not elaborate further; see Sotskov (1988, 1994) for a
complete proof of the sufficiency part of the theorem (and also some other
rules of elimination).

We proceed to proving the theorem in the opposite direction.

Necessity. Assume now that the veto*-procedure always yields single-
element outcomes and the blocking is not supermaximal. Then there exist
partitions N = K; U...U K, and A = X; U ... U X, such that no K blocks
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X ;. Consider the following profile Ry, for which the members of each coali-
tion K; rank the previously ordered alternatives of X; at the “bottom” of
their preferences:

X, X, X,
| Ky | Ky [ e | K

The veto*-procedure does not exclude the sets X7, ..., X, inside each coalition
Kj;. So it does not yield one-element outcome for this profile. We have a
contradiction.ll

(4.6.10). Algorithmization. Finally, we consider another variation on
the veto-procedure, which is better in terms of voting procedure, for it yields
a quasi-automatic building of blocking coalitions. Roughly, the procedure
consists in the following: Every agent (acting by turns) discards as many as
possible of his “worse” alternatives among those left after the previous agents
performed their discarding tasks. In order to discard his worse alternatives,
he can seek the help of the previous agents. However, agent j < i agrees to
help 7 block his worse alternatives if he is warranted that his following by
order alternative a(j) will also be discarded. We give a formal description of
this sequential veto-procedure which we denote by IT1.

(4.6.11) The Sequential Veto-procedure. Let N be the ordered set
{1,...,n}. Consider a blocking B and a profile Ry. Each step of the proce-
dure is identified with the corresponding agent’s label. Agent 1 eliminates the
largest lower contour of his preferences, which he able to block. Denote this
contour by M;. Let 4; = A\M;, and a(1) = min Ry|A4;. Agent 2 eliminates
the largest lower contour M, in Ry|A; either by himself (say if {2}BM>) or
together with agent 1, if a(1) € M> and {1,2}B(M;UM>). Let Ay = Ay\ Mo,
and a(2) = min Rz|A,. Now let us describe what occurs at step i. By this
time, we have a collection of sets Mj, of alternatives a(j), j < 4, and the
following set of alternatives A;_; = A\ U;;ll M; remaining after sequential
discarding. Let M; be the largest lower contour of agent i, for the linear order
R; | A;_1, that he is able “to block” in the following sense: there is a coalition
S C {1,...,i} containing i such that

SB(U M;j), and a(j) € Mg := (U M;) for every j € S\i. (4.2)
jes jes

Define now A4; = A;_1\M; and a(i) = min R;|A;.

An outcome of the procedure is the set A,,.

We work out the procedure in Example (4.6.4). It yields the following
sequence of pairs: (M;,a(i))=3 = (0;a), ({a,b};c), (B;c). The outcome is

A3 = A\M{1’2’3} = {C} € C(B,RN)
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(4.6.12) Theorem. The sequential veto-procedure always has a non-
empty outcome, i.e. A, # 0. If the blocking B is almost-additive, then
Ap, C C(B,RyN). If additionally B is mazimal, then A, = {a(n)}. Con-
versely, if the procedure always yields single-element outcomes, then the block-
ing B is supermaximal.

Proof. We outline the reasons for which the outcome is always non-empty.
Let B be a blocking, Ry be a preference profile and (M;,a(i)), i = 1,...n, be
a veto-sequence. Let S; be a coalition of agents helping ¢, such that S; BMg,
and a(S\{i}) C Mg (see relation (4.2). By induction and applying axiom B2,
we can show that the coalition S; can be determined as follows,

S; = {i} U S(M;). (4.3)

Here we use the following general notation: S(M) = U Sy, for k such that
k < i and a(k) € M. The reader will fill in the details. It is easy to check as
well, that either S; C S; or S; N'S; = 0 holds, for all ¢,j with j < i < n.
From this and from axioms B2 and B3, it follows that the outcome A, # 0.

We prove that A,, C C(B, Ry) if the blocking B is almost-additive. Let
a € A,\C(B,Ry). Then there exists a coalition K C N which blocks the set
L(a, Rk). Obviously, a(i) € L(a, Rx), Vi € K. Let i; be the agent whose
label is maximal in K, and let S! be the maximal coalition S C K, such that
S 34y and a(S;,) C Ms; denote by M! = Mg U {a(i1)}. Now, let iy be the
agent whose label is maximal in K'\S!, and let S? be the maximal coalition
T C K\S*, containing i» and such that a(T'\iz) C M7y, M? = Mg2U{a(iz)}
etc. The sets M, M?, ... are disjoint, U; M7 C L(a, Rk) and K = U;S7. From
this, almost-additivity and axiom B1, we conclude that S7BM7, for some j.
However this contradicts the maximality of M;..

We show that if the blocking is supermaximal then A4, = {a(n)}. To
this end, we do as above for K = N. This yields pairwise disjoint sets
M*', M?,..., M" and a corresponding partition N = H]’lesj. If| A, |>1
then r > 1 (otherwise by the maximality of B, a(n) could be discarded).
But if r > 1, then by supermaximality of B, there would exist some j such
that S7 BMJ, which is impossible.

The necessity part of the argument is analogous to that appearing in
Theorem (4.6.8). W

The inductive formula (4.3) for the “team” formed by agent ¢ and his
helpers can be incorporated into the procedure, and conveniently solves the
issue of organizing blocking coalitions for this veto-procedure. Since no out-
come of the procedure is empty whatever the blocking considered (even if
unstable), this procedure can be thought of as providing a “universal” social
decision. Theorem (4.6.12) states some good properties of this social decision
provided the blocking has “nice” properties as well.
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4.A1 Balanced Blockings

(4.A1.1) In addition to the class of convex blockings, the class of balanced
blockings constitutes another case of stable blockings. The proof of the non-
emptyness of cores, in this case, is based on a nontrivial theorem on balanced
games by Scarf (1967) (which is in fact equivalent to the Brouwer fixed point
theorem, see Danilov and Sotskov (1987b)).

Let us introduce a few useful notions. A bundle of coalitions = = {K}
forms a balanced covering, if there exist real numbers A\g > 0, K € =, such
that for any ¢ € N, Y;ex A = 1. It is as if every agent ¢ would participate
in a coalition K > ¢ with intensity (or share) Ag; as a result, the coalition
“functions” with intensity Ag.

The following Scarf condition (SC=) on a blocking B can be imposed on
a balanced covering =.

(SCz) Take an arbitrary family of sets X (i) C A, i € N. If every coalition
K € = blocks the set X(K) = U;ex X (i), then N blocks X (N) = Ujen X (7).
We can think of this condition to be a generalization of the super-
additivity axiom B2. The sets X (i) may be assumed disjoint for different i.

(4.A1.2) Definition. A blocking B is balanced if the Scarf condition
(SCz=) is fulfilled for every balanced covering =.

For example, additive blockings are balanced. In general, note that bal-
ancedness is closely related to additivity (see Danilov and Sotskov(1987a)).

(4.A1.3) Theorem. Balanced blockings are stable.

Proof. We establish the point using games without side payments. Let
RNy = (R;)ien be an arbitrary preference profile. A preference R; is then
represented by a utility function u; : A — R. Given a coalition K and a set
X C A, we denote by ug(X) the vector in RE whose i—th coordinate is
minge x u;(z).

Given a blocking B, we form the game without side payments G(B,uy) =
V = (Vk)kcn- Here the set Vi C R¥ is the set of vectors, less or equal to
uk (X) for some X, such that K enforces X.

We claim that the resulting game V' is balanced in the sense of Scarf.
That is, a vector v € RN belongs to Vy, as soon as its projections vx on the
spaces RE belong to Vi for all coalitions K from some balanced covering
Z. To check this, we form the following sets X; = {z € A, u;(z) > v;}.
Since vk € Vi, then there exists a set Yx C NjexX; which the coalition
K enforces. By monotonicity, K blocks A\ Niex X; = Ujex X;. Applying
the condition (SCz) to the family of sets (X;) we conclude that N blocks
Ujen Xi, i.e. that N enforces N;ecn X;. This means simply that v € Vi, which
establishes the balancedness of V' .

Now by Scarf’s theorem (1967) (see also Danilov, Sotskov (1987b)), the
core of the game V is not empty; it contains some vector v. Let x be an
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alternative for which v < un(z). It is clear that z belongs to C(B, Rn).
Indeed, if z could be rejected by some coalition K, then K would enforce the
set Y = A\L(a, Rk). And since ug(z) < ug(Y) then vg < ug(Y) € Vk,
which contradicts the assumption that v belongs to the core of the game V.
|

Once more, the following corollary obtains: additive blockings are stable.

We have encountered up to now three sufficient conditions for stabil-
ity, namely convexity, balancedness and almost-additivity. In general, none
of them is necessary. The three agents case constitutes an exception to
this rule. Indeed, in that case, the only non-trivial balanced covering is
({1,2},{2,3},{3,1}). And the corresponding Scarf condition coincides with
3-cycle condition, which is necessary for the stability (4.5.1). Henceforth we
have the following corollary.

(4.A1.4) Corollary. A blocking with three agents is stable if and only if
the 3-cycle condition is fulfilled.

We may seek for a somewhat more refined formulation of necessary con-
ditions of stability. Is it true, for example, that for any stable blocking B
there is a convex blocking B’ such that B C B’? In Moulin (1983) we find
the following claim: for any stable blocking B there is a maximal and stable
blocking B’ D B. Unfortunately this assertion is not true as evidenced by
the counter-example in Gurvich and Menshikov (1989).

(4.A1.5) Example. Suppose we have three agents and six alternatives.
Alternatives are divided in two groups of equal size, for example three ’black’
and three 'white’ alternatives. The blocking B is structured as follows: every
agent, enforces any group of five alternatives, every coalition of two agents
enforces any pair of alternatives of identical colour (and of course any larger
set of alternatives), the coalition of three agents enforces any alternative. The
reader will be easily convinced that the 3-cycle condition is fulfilled for this
blocking, thus B is stable. We show that it is not possible to extend B to a
maximal and stable blocking B’. First, note that it is impossible to strengthen
a two-agents coalition without loosing stability. Indeed, strengthening here
would mean that some two-agents coalition is able to enforce a bicolour pair;
but then the 3-cycle condition and, consequently stability, would not be ful-
filled.

Then, by maximality of B’, every agent would have to block any bicolour
pair of alternatives. By superadditivity, any pair of agents would enforce
(with respect to B’ ) any pair of alternatives, which again would contradict
the stability of B'.
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4.A2 Blockings with Infinite Number of Alternatives

(4.A2.1) We have worked till now with the assumption that the number of
alternatives is finite. We made this choice in order to avoid obscuring the
matters by dealing with secondary issues. Here, we say a few words about
the modifications needed in order to handle the case of an infinite number of
alternatives.

Typical examples of infinite alternatives sets are sets of tax levels, sanitary
norms levels, security levels etc. One could give many other examples such
as exchange, joint production, etc. All these social choice objects vary con-
tinuously. An infinite set of alternatives usually has some natural topology.
Thus we have to account for this topology in our definitions.

First, preferences should be continuous, i.e., closed (complete and tran-
sitive) binary relations R C A x A. In this set-up, the earlier assumption of
linearity of preferences is both restrictive and unnatural. Besides one should
assume that coalitions enforce closed sets, i.e. block open subsets of A. Denote
by (2 the class of open subsets of A. Then a blocking is a relation between
2V and 2, which satisfies axioms B1-B3. (Sometimes we shall consider that
a non-open set X might be blocked by a coalition if this coalition blocks
some open set X D X.) For example, if the strategy sets of a mechanism
m: Sy — A are compact and the mapping 7 is continuous, then the gener-
ated blocking B, satisfies these requirements.

As in the finite set-up, we can define the notions of convex, almost-additive
and maximal blockings considering only open sets or their complements when
needed. The definition of the core is unchanged; it is a closed subset in A.
Additive blockings are generated by probabilistic measures g on N and § on
A by the formula: K BX if and only if u(K) > B(X).

We assume also the following continuity axiom:

B5. Let (X,) be a directed family of open sets in A. If KBX, for all «
then K B(UgXa).

It is easy to check that a maximal blocking is continuous, that a contin-
uous almost-additive blocking is convex etc. as in the finite case. Given a
continuous blocking, one can construct a mechanism which generates it (see
(1.5.10)). However in general such a mechanism might be discontinuous. The
following example illustrates this point.

(4.A2.2) Example. Let z( be a fixed alternative in A; let the strategies
of agents be subsets X; C A. Let ¢ be an arbitrary choice rule on compact
subsets of A. We define the following mechanism:

(X1, Xp) = { 20 otherwise.

This mechanism is clearly discontinuous for any reasonable topology, but the
generated blocking B, (a Maskin blocking) is continuous.
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What we do not know, however, is whether a continuous blocking may be
generated by a continuous mechanism.

(4.A2.3) Veto-procedures should also be somewhat modified. We con-
sider more in detail the case of the sequential procedure, and as it happens
it clarifies the finite number of alternatives and weak order preferences case.
At step i of the procedure (recall that steps are agents’ labels) we have: a)
a closed remaining set of alternatives A; C A, and b) a family of alterna-
tive sets My, k < i, eliminated by agent k. If A; # 0, then the procedure
is carried one step further. In this step agent i eliminates the maximal by
inclusion open set M; C A; among the sets M (y) = {z € 4;, = <; y} which
he “blocks” with the help of a group of agents. This means that there exists
a coalition of “assistants” S C {1,...,i — 1} such that

({i} U S)B(M; U M),

where M; = UkegM,j, and M,:r is the maximal lower contour in Ry|Ay (i.e.
M, has the form {z € 4, z < y}), which is not “blocked” by agent k. A
new closed set A; 11 = A;\M; is thus determined and we add the set M; to
the list of eliminated sets. The set A,,+; is the outcome of the procedure (it
is an empty set if the procedure ends before n).

The non-emptyness of outcome result proven earlier remains true for con-
vex and continuous blockings. And if additionally the blocking is maximal,
then the last agent n considers all alternatives from an outcome as equivalent.

In short, the infinite alternatives case brings only technical difficulties;
moreover, as Abdou (1987) showed, a lot is carried over to the infinite agents
case. Actually, the main idea here is that the intrinsic difficulties of social
choice theory bear little on the issue of finiteness or infiniteness of the set of
alternatives.

4.A3 The Harems Lemma

Let there be finite sets X and Y, a correspondence S : X = Y, and a function
b: X — N. In this set-up a family of “harems” is a family (K(z), = € X) of
pairwise disjoint subsets K (z) C S(z) of size b(x). The Harems Lemma (see
Wilson (1972)) states that a harem family exists if and only if |S(X")| > b(X')
for any X' C X.

We now sketch the proof. For convenience we assume that b(z) = 1 for
every £ € X. This monogame variant constitutes the Marriage lemma. The
general (polygame) case can be formally constructed from this one by repli-
cating z, b(x) times.

Suppose X represents a group of spectators and Y a set of seats. For
every spectator z € X, let S(x) be the set of seats which he may have access
to. In general, these sets of seats may intersect for different spectators. The
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question is: can all spectators take possession of one of their feasible seats?
Of course, we have to assume that every group of spectators X' C X has
access on a whole to a sufficient number seats in the sense that

|S(XN)| = X7 (4.4)

Let the spectators enter the hall one by one and sit in one of their feasible
seats. Assume that U C Y is the subset of already occupied seats. The next
spectator x enters the hall. If there is a remaining free seat among his feasible
seats, he takes it; then the next spectator enters. Suppose on the contrary,
that all the feasible seats of x have already been taken by spectators Z C X,
i.e. S(x) C U and |S(z)| = |Z]|. Then the assumption (4.4) for X' = Z U {x}
implies that the group of spectators Z should have a feasible seat which does
not lie in S(z), i.e. S(Z) D S(x) and is not equal to it. If there is such a free
feasible seat (i.e. outside of U), then the corresponding spectator releases his
seat for z and takes another seat outside of U. If there is no feasible free
seat, then we consider the set Z' of spectators who occupy the seats S(Z).
Again, by condition (4.4), S(Z’) is bigger than S(Z). We generate in this way
an increasing family of feasible sets of seats until one of these overlaps the
limits of U. Then, the corresponding chain of spectators change their seats,
occupying some other accessible them seat while releasing their present seat
for spectator x. Spectator z sits and the next spectator enters. This goes on
until all the spectators are seated.
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agents, is proposed in Demange (1987) (see also Greenberg (1985)). Lemma
(4.4.3) about stability of almost-additive blockings was proved by Danilov
and Sotskov (1985, 1987a). Their proof yields not only the non-emptyness of
the core, but also succeeds in effectively constructing an elimination scheme.

The notion of veto-procedure from Section 6 is innovative. It did not arise
from a tabula rasa, but emerged after thoroughly reading of Demange (1987).
It generalizes the previously devised elimination procedures of Peleg (1978),
Moulin (1983) and Holzman (1986) (see also (5.5.2) and Sotskov (1988)).

Extensions of the notion of blocking and related notions of stability,
acyclicity and convexity for infinite sets of alternatives or agents can be found
in Keiding (1985), Abdou (1987), Abdou and Keiding (1991).






5. Strongly Consistent Mechanisms

In this chapter, we examine mechanisms that have strong Nash equilibria for
any preference profile. We start with some examples (Section 5.1), then inves-
tigate in more detail a strongly consistent mechanism with tokens (Section
5.2). Section 5.3 addresses the issue somewhat more theoretically. In partic-
ular, we show that for any maximal blocking B, there exists a mechanism
whose set, of equilibrium outcomes coincides with the core of the blocking B.
Further (Section 5.4) we consider direct core mechanisms, that is SCFs whose
outcomes are in the core. The existence of a strongly consistent selector from
the core depends on a property of the underlying blocking, namely “lam-
inability”. In Section 5, we introduce several equivalent characterizations of
laminable blockings, in particular an elimination procedure for finding strong
Nash equilibria. Then (Section 5.6) we provide examples of laminable block-
ings and in Section 7, formulate a necessary and sufficient condition for lam-
inability in terms of the blocking relation itself. In Section 8, we tackle the
case of neutral laminable blockings. The Appendix provides insights on the
strong implementation issue.

5.1 Definitions and Examples

(5.1.1) In this chapter as in the previous one we pursue our examination
of the cooperative aspects of social choice mechanisms. As before we as-
sume that agents have complete freedom of communication and may join
in coalitions and coordinate their actions in order to improve the outcome.
The main difference with respect to Chapter 4 consists in the manner by
which we shall warrant the stability of an outcome. In (4.1.1) “threats” of
counteracting coalitions were essential to warrant stability. In a stable state,
every attempt of a coalition K at improving its well-being is prevented by
an opposing coalition threatening to apply a strategy which renders the final
outcome unprofitable for K. Here we go a little further along this path and
ask: does there exist an array of fixed actions of agents such that these actions
per se constitute a threat to any deviating coalition. Thus the issue investi-
gated in the previous chapter, namely finding a stable state is now replaced
by that of finding “equilibrium” strategies. Formally we will be interested



146 5. Strongly Consistent Mechanisms

in constructing mechanisms which have strong equilibria for every prefer-
ence profile. Moreover we will investigate the means by which agents might
come to an equilibrium. In connection with this, we devote some time to the
construction of “simple” mechanisms and procedures for finding equilibria.

We now give more precise definitions. Let 7 : Sy = HiEN S; — A bea
social choice mechanism, and Ry be a preference profile.

(5.1.2) Definition. A strong equilibrium (or strong Nash, or coalition
equilibrium) in a game G(7, Ry) is a strategy profile s& = (s}) such that, for
every coalition K C N and every coalitional strategy sx € Sk, there exists
an agent ¢ € K for which

m(sn)Rim(sk, 8%)-

Thus a strong equilibrium (in what follows we will often omit the qualifier
“strong”) has the property that no coalition can strictly improve the outcome
for all its members given that the complementary coalition does mot change
its strategy. A strong equilibrium is a Nash equilibrium; it belongs to the core
(see lemma (5.1.4)). Thus it is very stable. In particular, a strong equilibrium
outcome is Pareto optimal in the set 7(Sy); we will incidentally deal with
mechanisms for which 7(Sy) = A. Thus the strong equilibrium concept is a
very interesting solution concept.

The set of strong equilibria in a game G(m, Ry) is denoted by SE(m, Ry).
Unfortunately this set might happen to be empty for some mechanisms that
otherwise seem very natural.

(5.1.3) Example. Simple majority. Let there be three participants and
three alternatives. Every agent names an alternative; an outcome is an alter-
native supported by a majority of agents. When all three alternatives win the
same number of votes, we select the alternative named by agent 2 (though
the choice of a tie-breaking rule does not play a big role here). Assume the
following preference profile Ry :

=N Q@ 8
N8 v
wie 8 €

There is no equilibrium in this case, obviously, and by the way the core
C(Bx, Ry) is empty. In fact, we have the following important property.

(5.1.4) Lemma. Let  be a mechanism, B, be the blocking generated by
7 (see Chapter 1, Section 5). Then for any profile Ry

m(SE(m(Rn)) C C(B, Rn).
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In other words, equilibrium outcomes belong to the core. Indeed suppose
that outcome a = w(s%) is rejected by the coalition K. This means that
the coalition K blocks the set L(a, Rk), i.e., it has a strategy sx such that
m(sk,sx) ¢ L(a, Rk) (for any strategy sz of the complementary coalition
K , in particular s*f) Thus the alternative 7(sg, s*?) is strictly preferred to
a = m(s}) for all members of the coalition K and s} is not an equilibrium.l

We give several more elementary mechanisms of the same type generating

non-stable blockings.

(5.1.5) Example. Decisive participant rules. (|N| =n > 3, |A| > 3).

a) Every agent names some alternative a; € A,i € N. If the first n — 1
agents named the same alternative, it is chosen; if not, then the alternative
a, named by agent n is chosen:

_ | a1 =..=ap_1, in case of equality
(a1, an) = { G, otherwise.
b) Agents 1,...,n — 1 name the alternatives ay,....,a,—1, and agent n

chooses among them.

¢) m(Rn) is an arbitrary Pareto alternative for the coalition N\{n} which
is preferred to a, = max R,|A for all members of the coalition N\{n}.

d) The “kingmaker” rule where the kingmaker is agent n (Example
(2.1.3)).

All these mechanisms generate a blocking B of a simple game with win-
ning coalitions {1,...,n — 1} and {i,n}, ¢ € N. The Nakamura number here
is equal to 2 and since the number of alternatives > 3, then by Proposi-
tion (4.5.5) the blocking B is not stable. Therefore due to lemma (5.1.4),
SE(m,Ry) = 0 for the corresponding profile Ry. Of course, equilibria may
exist for different profiles.

Recalling the general definition of consistency given in (1.4.3), we intro-
duce the following notion.

(5.1.6) Definition. A mechanism = is strongly consistent (or SC-mecha-
nism) if for any preference profile Ry € L(A)"N there exists a strong equilib-
rium in the game G(w, Ry), i.e. SE(m, Ry) # 0.

A legitimate question arises here: do SC-mechanisms exist? Are some of
them particularly attractive, and in general how many of them are there?
Below we give several examples of such mechanisms beginning with the most
simple ones.

(5.1.7) Example. A constant mechanism. Whatever the strategies of
agents, its outcome is a fixed in advance alternative a € A. This is a SC-
mechanism, though a rather dull one.

(5.1.8) Example. A dictatorial mechanism. A “dictator” is chosen
among the agents. The outcome is the alternative selected by this dictator.
This is also a trivial SC-mechanism.
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(5.1.9) Example. There are a lot of non-constant and non-dictatorial
SC-mechanisms in the two alternatives case (see (1.3.10), and (3.2.2-4)). For
that one should construct a maximal simple game (N,W). Every partici-
pant calls an alternative. The winning alternative is the alternative for which
the winning coalition in W has voted. Here there is a strong equilibrium in
dominant strategies.

In particular, the simple majority rule is an anonymous and neutral SC-
mechanism when there is an odd number of agents. Unfortunately when |A| >
2, this rule loses the coalitional stability property. We need more refined rules.
We now give two less elementary examples.

(5.1.10) Example. Maskin mechanism. We fix an alternative a. Every
agent 7 calls an alternative x;. If each agent voted for the same alternative,
we have an outcome; otherwise we set the outcome to be a.

This is a twofold mechanism. Participants, above all, try to achieve a
consensus, but if this fails, a constant mechanism (with outcome a) is trig-
gered. This is incidentally a particular case of the more general composite
mechanisms mentioned in (1.5.10).

We check that this is a SC-mechanism. Let Ry be a preference profile
and M (Ry) be the set of Pareto optimal alternatives which dominate a for
every agent (cf. Example (1.3.4)). Let all agents unanimously vote for the
alternative z from M (Ry). We affirm that this is a strong equilibrium. Indeed
the coalition N is not interested in changing = which is Pareto optimal. Other
coalitions can only force the outcome a. However, no agent would agree with
this since zR;a.

We would like to point out that there is a slight additional difficulty. It is
connected with the computation of equilibria issues. Indeed, though the exis-
tence of equilibrium is not at stake, it is not altogether clear how participants
may be able to reach an equilibrium without some outside help. They are sup-
posed to find out, somehow, the preferences of other participants in order to
build the set M (Ry) and to choose an element in it. This is merely a social
choice problem. The Maskin mechanism (and generally SC-mechanisms) can
not guide agents in their search for an equilibrium; it only can stabilize those
compromises that have been already agreed upon. We still need to devise a
procedure by which agents are to reach an equilibrium. This can be done
through the use of veto-procedures akin to the procedure II1 described in
(4.6.11), with the difference that we want it to lead to an equilibrium (see
procedure I72 in (5.5.2)). (Incidently this procedure ( IT1) brings agents to
an equilibrium in the case of a Maskin blocking.) The procedures we think
work are as follows: they fragment the act of choice into a sequence of elemen-
tary steps. At each step, the agents actions possess a “natural” and almost
automatic character. Of course this simplicity is obtained at the expense of
strong requirements on the blocking. As an example of such a procedure, we
consider a simplified variant of the SC-mechanism proposed by Peleg (1978).
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The understanding of the logic of this mechanism will greatly facilitate the
reading of the remainder of this chapter.

(5.1.11) Example. The Peleg mechanism. To each alternative z asso-
ciate an integer B(x) > 0. Let ) ., B(z) = n + 1, where n = |N]| is the
number of participants. An agent is asked to designate an alternative that he
wishes to block. If a number of agents > ((x) designates the alternative x,
then it is discarded. The outcome is defined to be any alternative among those
that have not been discarded (which one exactly is of no importance here be-
cause, owing to condition Y (x) > n , we know that some alternatives will
not be discarded). Let us check that this mechanism is strongly consistent.
For simplicity, we consider the particular case for which every 8(z) = 1 and
thus |A| = |[N| + 1. The general case will be discussed in Section 2. Let agent
1 designate his worst alternative z;, the second agent designates the alterna-
tive x2, his worst among the set A\{z;}, then the third agent designates his
worst alternative among the set A\{z;,z2} and so on. Finally n alternatives
Z1,%2, ...,y will have been designated and discarded. We denote by a the
remaining alternative. This profile of messages is a strong equilibrium. In-
deed, suppose that a coalition K might be able to move the outcome to, say,
x; (another alternative) . Then K has to include agent i, because his mere
sending a message discarded z;. However for agent i alternative a is better
than z; since by construction z1, ..., z;—; are the only alternatives worse than
x; for him.

The behavior of agents in this procedure is both very natural and “almost
dominant”. Every agent designates his worst alternative among those not yet
discarded by predecessors. Of course, this strategy is not dominant since it
depends on the strategies of predecessors. But as we have already seen, there
are not too many possible mechanisms in pure dominant strategy, thus we
are constrained to relax this concept somewhat.

5.2 A Tokens Mechanism (or Veto-mechanism)

(5.2.1) We now consider mechanisms which are both more general and more
interesting from a practical viewpoint than that of Example (5.1.11). Given
its importance, we devote a separate section to it.

The idea underlying the Peleg mechanism can be extended to the whole
class of additive maximal blockings ((4.2.1)). We construct a mechanism by
starting to define two families of non-negative integers:

n= (,U,(’L), i€ N): B = (B(.T), T € A):

connected by the relation
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We will view p and § as measures on N and A so that u(K) = >, u(i)
and ((X) is defined analogously.

We start by an informal description of the mechanism. Every agent 4
receives (i) tokens, which he is asked to lay on alternatives. Alternative z
is eliminated if the number of tokens piled on it is greater or equal to §(x).
An outcome is one of the not yet discarded alternatives and we are assured
of its existence by virtue of the inequality S(A) > u(N).

More formally: a strategy of agent i is a function s; : A — Z such that
si(A) = Y, si(xr) = p(i). Suppose that each agent chose a strategy s;. We
form a set

(sn) ={a €A, Zsi(a) < B(a)},

which is non-empty for every sy € Sy. Let m be an arbitrary selector from
the correspondence IT, such that 7(sy) € II(sn).

The structure of the blocking B, is simple to figure out. A coalition K
blocks a set X if and only if u(K) > S(X). This blocking is maximal and
additive. We easily check that it is super-maximal as well, thus stable (Theo-
rems (4.2.2) and (4.5.11)). Indeed, we derive it now from strong consistency.

(5.2.2) Theorem. The mechanism 7 is strongly consisten

Proof. Fix a preference profile Ry. We now proceed to construct an equi-
librium in a mechanical way. We start by fixing an order by which agents lay
out their tokens, i.e. a mapping

o:{l,.,u(N)} > N

such that 071 (i)| = u(i) for any i« € N. In other words, the process of laying
out tokens is divided in u(N) (the number of tokens) step. At the k-th step,
agent o(k) lays out a token. The behavior of an agent here is both sincere
and prudent. Namely, at every step, an agent lays his token on the worst
(from the point of view of R;) alternative among those not yet discarded in
the previous steps.

More formally, we define a sequence of alternatives zj, (1 < k < u(N))
and a sequence of eliminated sets Z (o < k < u(N)) as follows,

Zy ={z € A, B(zx) =0},

Tk = min(R(,(k) |A\Zk_1),

Z% = {2z € A, x meets B(z) times in the sequence (z1,...,2x)}.

Clearly, Zj, is equal to either Zy_1 or Z_; U {zx}. By the end of the
procedure, the set Z,ny consists of all alternatives, but one, which we denote
by a = a(o, RN).

Note that at each step k agent o(k) never puts his token “higher” than a,
i.e. on an alternative from L(a, Ry(1)). We affirm that the resulting allocation
of tokens s% is a strong equilibrium. Let the coalition K(z), for = # a,
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gather those agents which put some tokens on z. The coalition K (z) consists
of adversaries of z. Besides 3, () si(z) = B(x), so the coalition K (z)
eliminates z using a strategy s}((m). Hence as long as K(x) does not deviate
from the strategy 3;((95 , those agents for which = > a are not able to see z
realize as an outcome. Thus s} is an equilibrium. Wl

One of the nice features of this mechanism as an equilibrium revealing
procedure is that it requires minimal information from every agent. The only
information that an agent needs to know, at every step k, is the set Zj_1 of
alternatives rejected up to this step. He does not need to know the preferences
of other agents. And in fact, it is of little importance to him to know which
agent put what token where. Another nice feature of this mechanism is that
the strategy “to put a token on one’s worst alternative among A\Z,_1” is
a very natural strategy, especially if he has no idea about the preferences of
the subsequent agents.

Remark. Any allocation of tokens sy = (s;) such that:

1) n(sny) = a,

2) sij(z) > 0=z € L(a, R;), and

3) no alternative is “overloaded” (i.e. )_, s;(z) < f(z))
is a strong equilibrium.

In the following example, we show how to find an equilibrium using this
procedure.

(5.2.3) Example. Consider that N = {1,2,3,4}, A = {z,y,z}, p(i) =
2 for any i, B(z) = B(y) = B(z) = 3;and assume that 7 is an arbitrary
mechanism of choice on the set of non-discarded alternatives (as in Theorem
(5.2.2)). Take the following preference profile Ry :

z Y
z z
Y T

8w
ISII S

|1

[\)

|3 [ 4]

The first agent puts both his tokens on y, the second agent puts both his
tokens on z, the third agent lays one token on z, which as a consequence is
discarded, then he puts his second token on z, the fourth agent puts both
his tokens on z, which is therefore discarded as well. y is the only remaining
alternative, so m(Ry) = y. This is an equilibrium according to Theorem
(5.2.2).

e~

(5.2.4) Another nice feature of the tokens mechanism is that the agents
reach a strong equilibrium through individual actions. Roughly speaking “ev-
ery Nash equilibrium is also a strong equilibrium”. Of course, this is not true
to the letter. Not every Nash equilibrium is a strong equilibrium (nor is it al-
ways efficient). Indeed, suppose that every Nash equilibrium be efficient, then
by Dutta’s Corollary (2.6.4) the blocking is generated by a simple game. Since
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this blocking is stable and maximal, it is dictatorial (see (4.5.7)). In order to
give a meaning to the sentence in quotes, we should exclude silly (abnormal)
equilibria. It is easily done here. We shall say that strategy profile sy = (s;) is
normal if no alternative is overloaded (see Remark above). This requirement
is very natural if tokens are taken out successively and if every agent is able
to see his predecessors’ tokens’ lay-out before he moves. Thus the following
proposition is true.

(5.2.5) Proposition. Let sy be a normal Nash equilibrium in the game
G(m,Rn). Then sy is a strong equilibrium.

Proof. Let s} be a normal Nash equilibrium. Then the strategy s} of agent
i is such that no token is put on alternatives ranking higher than a = 7(s%),
i.e. all tokens piled on alternatives in L(a, R;). Normality implies that all
alternatives differing from a are discarded and that S(a) — 1 tokens lay on a.
Suppose that agent ¢ had put a token on an alternative b ranking higher than
a according to him. Now if he would transfer this token to a , the outcome
would be b. This contradicts the assumption that a is a Nash equilibrium
outcome.

The remainder of the proof goes as in Theorem (5.2.2). B

(5.2.6) Let us return to the issue of the properties of the equilibria con-
structed in the proof of Theorem (5.2.2). The outcome a = a(o, Ry) clearly
depends on the sequence of moves o. More, one can show (see Moulin (1983))
that any outcome from the core C'(B, Ry) can be obtained by the choice of a
suitable o. Agents, however, are not indifferent to the choice of o. The later
an agent lays his tokens, the better; for, in effect, some other agent might
have contributed to discard his worse alternatives. Thus to respect fairness,
the allocation of moves of agents on the segment {1, ..., u(N)} should be in
some way “uniform”.

Using suitable weights p and 3, one can construct “almost” anonymous
and neutral SC-mechanisms. More exactly, define n = |[N| and m = |A|. If
n and m are relatively prime, then there exist some natural integers uo and
Bo such that pon + 1 = Bom. Then pose u(i) = po, B(x) = Bo. This yields
an anonymous and neutral blocking B.! When n and m are not relatively
prime, there does not exist even an anonymous and neutral (maximal and
stable) blocking. However, in this case, one can allocate the same number of
tokens po to every agent, then find a solution of the equation

pon + 1 = Bom + 1,

where 0 < r < m , and define §(x) to be equal to 8y or to Sy + 1. Although
alternatives will not have exactly the same weight, this imbalance is negli-
gible (especially for a large value of pp). In an analogous way, we can give

! Nevertheless the corresponding mechanism 7 = 7, s may not be anonymous or
neutral. This is due to the fact that the choice of a selector from IT is arbitrary,
though this is somewhat inessential.
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alternatives an equal weight and allocate almost the same number of tokens
to the agents, which makes them almost equal.

5.3 Blockings Generated by SC-mechanisms

(5.3.1) We undertake now a more theoretical investigation of SC-mechanisms
and their construction. Allocations of power among coalitions, that is block-
ings, play the major role in the theory of SC-mechanisms. The importance
of the blocking has been felt in both the cases of the Peleg mechanism and
the tokens mechanism seen above. These SC-mechanisms are based on max-
imal additive blockings. What are the properties of blockings generated by
SC-mechanisms? Let us answer right away: maximality (1.5.12) and stabil-
ity (4.1.8); see also Theorem (4.5.11), where numerous characterizations of
stable maximal blockings are given. We give more precise statements below.

(5.3.2) Proposition. If 7w is a SC-mechanism, then the generated block-
ing By is mazimal and stable.

Proof. The stability follows from the definitions and lemma (5.1.4). We
check the maximality property. The reasoning is analogous to the case of two
agents seen in Proposition (2.2.2). Suppose the coalition K does not block
the set X C A and suppose that K does not block the set X. We consider
the following preference profile Ry:

X
X

=

K

Let s% be a strong equilibrium in a game G(m, Ry). Then w(s}) belongs
either to X or to X ; suppose that w(sy) € X. The coalition K does not block
X, thus the complementary coalition K is able by strategy s7z to transfer
the outcome to X, i.e. m(sk,sx) € X. This outcome 7(s},sz) is strictly
preferred to 7(s%) (which belongs to X) for all members of K ; this is in
contradiction to the assumption that s}; is an equilibrium. And analogously
for m(sh) € X. A

The converse is not true: a mechanism can generate a maximal stable
blocking, while failing to be strongly consistent (compare with Theorem
(2.2.3)).

(5.3.3) Example. There are two agents. Each agent has two strategies.
The mechanism 7 : S; x So = A = {z,y,a} is given by the table

S9 s
S1 a
sh x y
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One can see that the first agent blocks sets {a} and {z,y}, the second blocks
{z} and {y}. Thus the blocking is maximal. Stability is obvious. However at
the profile

=8 & w
N R R

there is a unique Nash equilibrium (s1,s2) with outcome a, which is not
Pareto optimal.

In order to sense the difference between strong consistency of a mechanism
and stability and maximality of its associated blocking, we give the following
necessary and sufficient condition ensuring that a strategy profile be a strong
equilibrium.

(5.3.4) Proposition. A strategy profile s € Sy is a strong equilibrium
in a game G(mw,Ry) if and only if for every alternative x, not equal to a =
m(s¥), there ezists a coalition K(x) C N satisfying the two properties:

1) the relation aR;x holds for every i € K(x);

2) K(x) blocks x using the strategy SK(z)-

Proof. Sufficiency. Suppose the coalition K has a strategy sx such that
the outcome 7(sk, s%) = = >k a. According to 1) KNK(z) =, so K(X) C
K. Then by 2) m(sk, s3) # . We have got a contradiction.

Necessity. Define K(z) = {i € N, aR;xz} and suppose that K(z) does
not block x using the strategy sy ,). This means that the coalition K (z)

has a strategy spy such that w(s}((m), sm) = z. Now the fact that z > a

for members of the coalition K (z) contradicts the assumption that s% is a
strong equilibrium.Hl

Remark. In Proposition (5.3.4), the property 2) could be replaced by the
following property

2') for any X C A, the coalition K (X) = Uzex K(z) blocks X using the
strategy 3}((90)-

(5.3.5) The family of coalitions (K (x), z € A\{a}) in Proposition (5.3.4)
is a supporting scheme for the equilibrium outcome a (see Lemmas (4.4.6) and
(4.4.7) ). There, and here as well, we note that a stable outcome a requires
a supporting scheme (or a structure which enables us to suppress all other
alternatives). Here this scheme is implemented by some fixed strategy profile

Of course, the existence of such strategies sj requires that the stock of
strategies at our disposal be sufficiently rich. There are standard ways to
enrich the set of strategies and to increase the stability of outcomes, for
instance, by considering repeated game set-ups or informational extensions.
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We now say a few words on informational extensions in order to acquaint
the reader with what follows. By informational extension of a mechanism we
mean that participants are allowed to communicate (threats etc.) with other
participants while keeping their initial strategies sets fixed. We illustrate this
idea returning to Example (5.3.3). The “good” outcome y is obtained through
the use of the strategy profile (s}, s)). However, the second agent has an
incentive to switch over to s», because (assuming that the first agent remains
passive) he prefers the outcome z. But if agent 1 can threaten him to switch
from s} to s; should he consider the move to s,, then he will refrain from
doing so. The transition to informational extensions increases the stability
(see, for example, Kukushkin and Morozov (1984)). Incidentally, the following
theorem uses in its proof of the idea of a “universal” informational extension
for which the difference between core and strong equilibria outcomes vanishes.

(5.3.6) Theorem. Let B be a mazimal blocking. Then there exists a
mechanism © such that B = B, and

W(SE(’”aRN)) = C(B)RN)

for any preference profile Ry .

For convenience we divide the proof in three steps.

Proof. a) Construction of the mechanism. An agent’s message consists
in a pair (Ry,z), where the profile Ry € L(A)" and the alternative z
€ C(B, Ry). In short, every agent tries to guess the group’s preference pro-
file and proposes some stable alternative as a solution to the social choice
problem. Thus the set of strategies S; of an agent i, is the graph of the core
correspondence C(B, -).

We now explain how the outcomes form. Suppose that the agents messages
are s; = (R, z%). Those agents, whose messages coincide, join in coalitions
K; of “like-minded individuals”. This yields a partition of agents N = K; U
... U K, where the message of members of K is (Rfv, 27). Now we form the
sets )

X; = L(«7, RJK_).

Since z7 belongs to the core at the profile R{V , the coalition fj does not block
the set X; = L(a7, R%) By maximality of the blocking B, the coalition K

blocks Yj. So by virtue of the basic property of blockings, X U...U X, # A,
ie. X;N...N X, # (. We then pick an arbitrary element from X; N ...N X,
as an outcome 7(sy). This completes the construction of the mechanism 7.
Note that 7 is almost uniquely determined by the blocking B, if we except
some arbitrariness in the choice from X; N...N X;.

The message (Ry,z) implicitly urges the coalition K to block the com-
plement to the set L(z, Ry). That is every agent is more preoccupied in
punishing those individuals which do not share his views ( “dissidents”),
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than in improving upon certain outcome for himself. The efficiency of this
punishment will depend directly on the number of agents in the coalition to
which he belongs. Therefore one can expect that when all agents send the
same message s* = (Ry,a), where Ry is the true profile of preferences, we
have an equilibrium for the game G (7, Ry).

b) Coincidence of the core and of the equilibrium outcomes set. We claim
that for any a € C(B, Ry) the messages s¥ = (Rn,a) form a strong equilib-
rium for the game G (7, Ry).

We start by checking that m(s%) = a. Since all agents send the same mes-
sage, all of them are like-minded and the outcome 7 (s%,) belongs to L(a, Ry)
which by definition is equal to {a}. Let us see now what would happen if
some coalition K deviated from the strategy s*. In this case, one of the “like-
minded” coalitions consists of K. So 7(sx, s%) € L(a, R). But this means
that the new outcome is no better than a, for some member of K.

Thus we checked the inclusion

C(B,Ry) C n(SE(x, Ry)).

The reverse inclusion is true if B = B, (Lemma (5.1.4)). This equality will
be established in the step c). The second assertion of the theorem is proved.

c) Coincidence of the blockings B and B,. Due to maximality of B it
suffices to check that B C B,. Let K be a coalition, X C A be a set, and
KBX. We need to show that K B;X. For that we take a profile Ry:

X
X

=]

K

At such a profile, the coalition K rejects any alternative from X so that
C(B,Ry) C X. We will check below that the core C(B, Ry) is non-empty,
but for the time being we pursue the line of reasoning. We take an arbitrary
element a € C'(B, Ry) and suppose that all members of the coalition K send
the same message (Rn,a). Then the outcome will fall into the set L(a, R%),
which belongs also to X as a € X whatever be the messages sent by other
agents. This just means that K B, X.

Lastly we need to establish the following fact. Let the group N be divided
in two sub-groups K and K. Denote by R the preference common to all
members of the coalition K and by ‘R the opposite preference common to
all members of K. This we call an antagonistic preference profile.

(5.3.7) Lemma. Let there be given an antagonistic preference profile Ry
and a mechanism © with maximal blocking B,. Then there exists a unique
equilibrium outcome.

In particular, the core C(B, Ry) is a singleton.

Proof. We view K and K as two agents whose strategies are Sk, Sz and
whose preferences are respectively R, ! R. The blocking being maximal, there
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exists a Nash equilibrium for this game. We can easily exhibit its associated
outcome a. It is such that K blocks the set L(a, R)\{a} but does not block
L(a, R). Let K block L(a, R)\{a} with the help of a strategy s} , thus due to
the maximality of B, coalition K blocks L(a,! R)\{a} using a strategy ST
Clearly the strategy bundle (s}, s*?) is a strong equilibrium whose outcome
is a. And moreover a is the unique outcome from the core C(B, Ry). This
completes the proof of both the lemma and the theorem. l

(5.3.8) Corollary (Moulin, Peleg). A blocking B is stable and mazimal
if and only if there exists a SC-mechanism 7 with B, = B.

(5.3.9) We now have one more characterization of maximal and stable
blockings, namely they appear as blockings generated by strongly consistent
mechanisms.

There is something unsatisfactory in the mechanism constructed above.
In effect, in spite of its strong consistency, it has the same kind of drawback
we noted in the case of the Maskin mechanism discussed in Example (5.1.10).
In order to come to an equilibrium, agents have to accomplish some kind of a
miracle, namely they have to guess first what the preferences of other agents
are and then to agree to the choice of an element from C'(B, Ry). It is not
clear how they can manage to do so if the best they can do is to have vague
ideas about what the preferences of their partners might be.

To some extent, considering a reasonably organized social choice proce-
dure might save the case. We note that it follows from both the definition of
the mechanism and the structure of the equilibrium messages s} = (R, a),
that every message of the type s; = (R'y,a), where L(a, R}) C L(a, R;), i €
N, a € C(B,RY), is also an equilibrium message. Thus, in order to reach
an equilibrium, it is crucial that agents identify the sets of alternatives
which they are ready to prop down. And the agents can determine these
sets, going through the sequential procedure (or procedure I11). These sets
M;, a(i), i € N, and the outcome of the procedure A,; = {a}. We denote
by

R = (x> a>a(i) > M(®%)).

(5.3.10) Proposition. Let B be a mazimal stable blocking. Let N =
{1,2,...,n} the set of agents and Ry be a preference profile. Let a be an
outcome of the sequential procedure. Then the messages sf = (Ry,a) are
equilibrium strategies and a is an equilibrium outcome for the game G(7, RN).

Proof. Since a is an outcome of the procedure, a € C(B, Ry) (Theorem
(4.6.12)). Since L(a, R}) C L(a, R;) for any ¢ € N, then by monotonicity of
the core correspondence ((4.1.12)) a € C(B,R%). Thus (s}) are messages.
By definition of the mechanism 7, the equality (s} ) = a is true. We check
now that s} are equilibrium strategies. Let some coalition K implement a

strategy s and transfer the outcome to a point z, while the coalition K of
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“like-minded” agents and opponents to those agents in K, sends the same
messages (s7). In this case according to the definition of the mechanism =,
the outcome falls into one of the sets X; = M; U {a(j)}, j € K. Hence if
the coalition K deviates from the strategy sj, it can not warrant improving
strictly the gains to all its members. Thus s% is an equilibrium strategy
profile and «a is an equilibrium outcome.l

In the next sections, we propose alternative constructions of SC-mecha-
nisms, for which the process of reaching equilibrium and stabilizing outcomes
is more natural than here.

5.4 Direct Core Mechanisms

(5.4.1) The universal SC-mechanism, constructed in (5.3.6), was somewhat
unsatisfactory for two reasons. The first one was that it required that agents
send rather intricate and ingenious messages. The second reason was that it
was rather difficult to figure out how agents could really come to an equilib-
rium. We propose here to minimize these difficulties as much as possible.

In some sense, information on preferences is the most natural information
required for decision making within a group. Therefore it is natural to inves-
tigate the properties of direct mechanisms, i.e. those mechanisms 7w : Sy — A
for which the strategy sets consist in linear orders, S; = L(A). However this
restriction alone is too weak because it says nothing more than the set S;
consists of |A|! elements. We should link in a reasonable way the outcomes
m(Rn) with the profiles Ry, and indeed account for the rich structure of the
set L(A). This can be done in various ways, but we shall consider only one.
We would have ideal mechanisms 7, if any true preference profile Ry were
already a strong equilibrium in the game G(r, Ry). But, as we know from
Gibbard’s theorem, this is impossible with the exception of a few degener-
ate cases (however, see Theorem (5.4.6) below). Nevertheless, one might try
to ensure that the profile Ry be an “almost equilibrium” or at least close
enough to an equilibrium, in order that the mechanism 7 does the job of
finding the equilibria. We know from Lemma (5.1.4) that equilibrium out-
comes in the game G(mw, Ry) belongs to the core C(Br, Ry). So it seems
reasonable to require that the outcome 7(Ry) belong to C'(Br, Ry), for any
profile Ry € LY. Though such an alternative is not necessarily an equilib-
rium outcome, it is already good enough to prevent agents, to some extent,
wishing to distort their preferences.

(5.4.2) Definition. A direct mechanism 7 : LY — A is called a core
mechanism if 7(Ry) € C(Byx, Ry) for any Ry € LY.

In the sequel, we shall examine core mechanisms only. We shall start
with a blocking B (viewed as a “pre-mechanism”), which we shall gener-
ally assume maximal and stable (see the Moulin-Peleg theorem (5.3.8)). The
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following question arises: is it possible to choose a selector 7(-) € C(By,")
of the core correspondence of the blocking B so that the resulting direct
mechanism 7 : LV — A be strongly consistent and how should one do this?
We give an initial and somewhat approximate answer. In many cases, that
is for many blockings, we can not find a strongly consistent selector. But,
when we can find a strongly consistent selector, then all selectors will turn
out to be strongly consistent as well. Thus the issue does not consist in an
ingenious choice of a selector from C(B,-), but in the proper choice of the
pre-mechanism B. The strong consistency property of the selector requires
that we pick a narrower class of blockings in the class of all supermaximal
blockings. We call this class, the class of laminar blockings.

Let us start with an example of blocking, whose associated and arbitrary
core mechanism is not strongly consistent.

(5.4.3) Example. N = {1,2,3,4}, A = {z,y, z}. Assume that the block-
ing B is additive, that the weight of each agent is equal to 2, and that the
weight of each alternative is equal to 3. In other words, any number of agents
r, where r < 4, blocks any r — 1 alternatives. The blocking B is stable and
maximal.

Let now 7 : LY — A be an arbitrary selector of the core correspondence
C(B,-). We affirm that for the following profile Ry,

N e 8

Ry =

there is no equilibrium in the game G(m, Ry). Indeed, let Ry € SE(nm, Ry).
Since z ¢ C(B, Ry) then m(Ry) # x. We start by checking that the condi-
tion min B3 = min R = z is fulfilled for an equilibrium profile R}, as it is
for the original profile Ry . In fact, suppose min R5 = y. Then the coalition
{1,4}, using a strategy RIN :
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can make the outcome equal to x. Indeed, at such a profile, alternative z
is rejected by the coalition {1,4}, while alternative y is rejected by the
coalition {1, 2,4}, so C(B, RYy) = {z}, and n(R;) = =. However, alternative
z is preferred to m(R% ) # x for the agents 1 and 4.

Thus minRy = min R} = z. Let 7(RY) =y (the case 7(R}) = z is sym-
metrical). In this case, the coalition {1,2} can benefit from transferring the
outcome to z, using a strategy,

|4
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z | oz | *x | =

z |z | x | x

y |y | x | %
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This contradicts the assumption of R}, being an equilibrium profile.

(5.4.4) Singular Profiles. In the previous example, the core C'(B, Ry)
consisted of two alternatives y and z. And this was not just by chance. As we
shall see, if at a profile Ry the core C(B, Ry) consists of unique alternative,
then equilibria exist. Moreover, for any core mechanism 7 the profile Ry
itself will be an equilibrium in the game G(7, Ry).

(5.4.5) Definition. A profile Ry is called a-singularif C(B, Ry) = {a}.
A profile Ry is singular if C(B, Ry) consists of a single alternative.

(5.4.6) Theorem. Let B be a convex blocking (see (4.3.1)), and Ry be
a singular profile. Then for any selector ©(-) € C(Bg,-), Ry € SE(m, RN).

Proof. Let C(B, Rn) = {a}. According to Demange’s theorem ((4.3.7)),
for any alternative z # a, there exists a coalition of “opponents” to x, K (x) C
N, such that

a) aR;x | for all i € K (x),

b) K(l‘)BL(:L’, RK(z))-
By definition of the mechanism 7 and property b) the coalition K (x) blocks
x by the strategy Ry (). We only need now to apply Proposition (5.3.4). B

We see that the property of strong consistency of core mechanisms is
closely connected with the presence of singular profiles. More exactly, we can
prove the following corollary.

(5.4.7) Corollary. Let B be a convez blocking, and a profile Rn have the
following property: there exists a-singular profile R} such that Ry <, Rn.
Then Ry € SE(m, Ry) for any core mechanism 7.

Proof is similar to that presented above.ll

(5.4.8) We will call regular those equilibria whose existence is established
in Corollary (5.4.7). Regular equilibria have two additional nice properties.
The first is that C(B,Ry) = {a}, which determines uniquely the value of
the core mechanism 7 at the point R},. The second is that the profile R},
is “similar” to the true profile Ry, in the sense that R} <, Rn. Denote by
RE(B, Ry) the set of regular equilibrium outcomes of a blocking B at the
preference profile Ry .

Note that the profile R} can be assumed a-equivalent to the profile Ry .
For that it suffices to define, for agent i € N,

Ry = (Ri|Xs, Rj|Xy),
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where X; = L(a, Rf)\{a}. Then for i € K(z), we have x € X;, so that
L(z,R!*) = L(z,R}) and K(z)BL(z, R;(*(m)). Analogously we check that
R}‘V* S RN.

This shows that a regular equilibrium (provided it exists, as we know
it might not always exist, see Example (5.4.3)) is obtained from the true
preference profile Ry by shuffling some alternatives lying “under” a. The
aim of such shuffling is to reject all alternatives differing from a. This hints
at how to construct regular equilibria. We discuss this idea more in detail in
the next Section.

Since the notion of regular equilibrium does not depend on the choice of
a selector in the core correspondence, but only on the blocking itself, it is
justified to introduce the following core equilibrium notion.

(5.4.9) Definition. Let B be a blocking and Ry be a preference profile.
We say that a profile R} is a core equilibrium for Ry if

CEl. C(B, Ry) = {a},

CE2. C(B, (R’K,R*?)) C L(a, Rk) for any K C N and any R}, € L¥.

The alternative a is a core equilibrium outcome (or CE-outcome) for the
preference profile Ry. Let CE(B,Ry) denote the set of CE-outcomes at
Ry . In the sequel, we shall drop the symbol B in expressions like C(B,.) for
brevity.

It is easy to see that CE(Ry) C C(Rn). Assume that a ¢ C(Ry) and
that the coalition K blocks the set X = L(a, Ry). Let R' be a preference
order of the form (X > X). Then C(RY%, R}) C X and hence a ¢ CE(Ry).

(5.4.10) Proposition. Let B be a stable blocking. A pair (Ry,a) is a
core equilibrium if and only if for any alternative x # a there exists a coalition
K(xz) C N such that

a) aRjz for all j € K(x),

b) K(m)BL(a:,R;((z)).

Proof. Let (R}, a) be a core equilibrium for a blocking B. Suppose that,
for some alternative x # a, there exists no coalition K(z), satisfying the
conditions a) and b). Denote by K = {i € N, z >; a}. Propping z to the top
in the preferences of agents i € K, we get x € C(RY, R*?) C L(a,Rk), but
this is impossible. Conversely, let the conditions a), b) be fulfilled. Then no
z # a belongs to C(R%) and since the blocking is stable CEl is true. Show
CE2. Let = ¢ L(a,Rk). Then zRja for all j € K. So by a) K N K(z) = 0,
and by b) K(z)BL(x, R;((m)), therefore z ¢ C(R}, R}.) for any Rl

(5.4.11) Corollary. If a € CE(Ry) then there exists a core equilibrium
(RY,a) such that Ry <, RN.

Proof. Let (R}, a) be a core equilibrium for the preference profile Ry and
let (K (), # a) be a family of coalitions satisfying a) and b) from Propo-
sition (5.4.10). We form the new profile R}, for each i, R* = (X, Rf|K;),
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where X; = L(a, RY)\L(a, R;). According to Proposition (5.4.10), we should
prove the condition b) for Ry. Let ¢ # a and ¢ € K(z). Prove that
L(z,R*) C L(x,R}). Since i € K(x) then aR;z and = € L(a,R;) C X;.
So L(z, ;") C L(z, R}) for any i € K(z), and L(z, Ry ,)) C L(z, Ry (,))-
Therefore K (x)BL(x, R;(*(m)). [ |

(5.4.12) Corollary. CE(B,Ry) C RE(B,Ry).1

We establish below the converse inclusion.

As becomes clear now, the existence of regular equilibria issue is closely
connected with the notions of elimination scheme ((4.4.5)) and of supporting

scheme ((4.1.5)), but more precisely with some their combination. Let some
blocking B be fixed.

(5.4.13) Definition. A laminar supporting scheme of an alternative a
at a profile Ry is an elimination scheme K of the set A\{a} such that aR;x
for every i € K(z).

That is for any alternative # # a, there is a coalition K(x) of “oppo-
nents” to x (axiom C1) summoned to “prevent” the outcome to be z (axiom
C2). Given a blocking B and a profile Ry, denote by Nu(B, Ry) the set of
alternatives a, for which there exist laminar supporting schemes. This set gen-
eralizes Holzman’s nucleus concept (1987), in which the blocking coalitions
in the elimination scheme were assumed to be disjoint.

(5.4.14) Proposition. Let B be an almost additive blocking ((4.4.2)),
Ry be a profile and a € A. The following assertions are equivalent:

1) there ezists an a-singular profile Ry such that Ry <, Rn;

2) there exists a laminar supporting scheme of alternative a at the profile
Ry.

Proof. 1) = 2). Applying the Corollary (4.4.8) to the profile Ry and
X = A\{a}, we know that there exists an elimination scheme K: A\{a} — 2V
such that aR}z for i € K(z). Since Ry =<, Ry then aR;z for i € K(z).

2) = 1). Let K: A\{a} — 2" be a laminar supporting scheme of a at
profile Ry. We explicitly construct a regular profile R},. To this end we
introduce the sets

L, ={z € A\{a}, i € K(x)}.
After that as R} we take any linear order such that:

i) the set L; stand at the bottom of R} ;

ii) the order R}|L; be such that the relation R}y implies K (x) D K (y).
Obviously such R} exist. Then by i) aR}z obtains for all i € K(z). By ii)
we have for i € K(z)

L(z,R}) C{y € Li, K(z) C K(y)}.

One can see from here and C2 that the coalition K (z) blocks the set
L(z, Ryp)) C {y € Li, K(z) C K(y)}. M
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Now we can establish the following

(5.4.15) Theorem. For any almost-additive blocking B the following
equalities hold
RE(B,-) =CE(B,-) = Nu(B,").

Proof. RE(B, ) = Nu(B,-) by Proposition (5.4.14). RE(B,-) D CE(B,")
by Corollary (5.4.12). Let a € Nu(B, Ry) and take the profile constructed
above in Proposition (5.4.14) as R} . Then the pair (R}, a) is a core equilib-
rium for Ry, that is a € CE(B,Ry). R

5.5 Laminable Blockings

(5.5.1) We saw that we can associate three correspondences RE, CE and Nu
to every blocking. They are equal to each other when blockings are almost-
additive. However they might be empty-valued for some profiles. To ensure
that these correspondences be non-empty-valued, we need to restrict the class
of blockings. This section is devoted to the description of one of these classes
and its properties. In addition we develop a procedure, based on laminar
elimination schemes, which explicitly yields regular equilibria.

Let us start by exploring the procedure in which regular equilibria and
elimination schemes are constructed step by step. For example the proof of
Theorem (4.4.7) used such a procedure. Three ideas underlie the notion of
elimination schemes. The first is that one should seek a coalition K (x) of
“opponents” to z among those participants which rank x low. The second is
that a coalition K (z) which “rejects” x should be of minimal size. The third
is that one can prop alternative z up in the rankings of other agents in order
to enable agents to reject a next alternative.

(5.5.2) Elimination procedures. Procedures emerge from these ideas.
We need the notion of a minimal elimination scheme. An elimination scheme
K :X — 2% is called minimal, if for any elimination scheme K': X — 2V
such that K'(z) C K(z), the equality K' = K is fulfilled.

The elimination procedure II2 presents a sequence of steps. At every step
r both an alternative z, and a coalition K (z,) form under the following
conditions:

a) the elimination scheme K formed at this step is minimal for the set
{z1, .00y 21 };

b) z, = min(R;|A\{z1, ..., x,—1}) for any i € K ().

We say that the procedure carries to the end if as a result one succeeds
in eliminating all alternatives from A but one. This alternative is called the
outcome of the procedure IT2 and is denoted by a. The procedure by con-
struction yields a laminar supporting scheme of a at profile Ry provided it
carries to the end.
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We illustrate how this procedure works with an example.

(5.5.3) Example. N = {1,2,3,4}, A = {z,y,z,u}. The blocking is
additive and is given by the weights u(1) = ... = u(4) = 3; B(z) = B(y) =
B(u) =4, B(z) = 1. Let the profile Ry be as follows:

e 2 8 W
R &
wWR @ & W
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At the first step, the coalition K (z) = {2, 3} eliminates z since u(K(z)) =
6> fr) = 4.

At the second step, the coalition K(y) = {1,2,3} eliminates y since
n(K(y)) =9 > B(z,y) = 8.

At the third step, the coalition K (z) = {2} eliminates z since u(K(y)) =
9> B(z,y,2) =9.

Therefore, the outcome of the procedure is u. Note that C'(B,Ry) =
{z,u}. The corresponding regular equilibrium profile has the form:

* | u | 2z | =x
x |y | uw | *
u | x|y | x
y | oz |z | wu

L2 ]3] 4]

Thus if the procedure I72 carries to the end, for a given profile Ry,
there exists both a laminar elimination scheme and a regular equilibrium R}
And what if it does not? Then, as we proceed to show, there is no laminar
elimination scheme and regular equilibria for some (maybe, differing slightly
from Ry) preference profile. Let us introduce a preliminary definition.

(5.5.4) Definition. A blocking B is called laminable if for any profile
Ry € LY there exists a laminar supporting scheme of some alternative.

A laminable blocking is obviously stable, since any supported alternative
belongs to the core (see Lemma (4.1.6)).

(5.5.5) Theorem. The following conditions on a blocking B are equiva-
lent:

1) B is laminable, that is the correspondence Nu(B,-) is non-empty-
valued;

1) B is maximal and the correspondence CE(B,-) is non-empty-valued;

1") B is mazimal and the correspondence RE(B,-) is non-empty-valued;

2) B is mazimal and any core mechanism w(-) € C(B,-) possesses regqular
equilibria for any preference profile Ry,
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2") B is mazimal and some core mechanism w(-) € C(B,:) possesses
reqular equilibria at any preference profile Ry,
3) procedure I12 carries to the end at any profile Ry.

Proof. If B is laminable, then B is maximal and stable by Lemma (4.1.7).
Moreover it is almost-additive according to the Theorem (4.5.11). Therefore
1) implies 1’) and 1”) by Theorem (5.4.15). Conversely, if CE or RE is non-
empty-valued, then B is stable, and adding maximality, almost-additive. Thus
by Theorem (5.4.15), B is laminar. Therefore 1), 1') and 1) are equivalent.

It is clear that 1') = 2). Obviously 2) = 2'). If 2) holds, then for any
profile Ry, there exists a a-singular profile R, <, Ry, that is 1") is satisfied.

Clearly, 3) = 1).

It remains to establish that 1) = 3). Let Ry be a profile, we check now
that procedure I72 carries to the end. Assume we have succeeded in making
several steps and constructed a minimal eliminating scheme K : X — 2V
where the set X = {ai,..., ap} contains more than one element, p > 2. We
show that one can make a next step and eliminate one more alternative a;.
Let us form, for any alternative @ € X , the coalition

II(a) = {i € N, minR;|X = a}.

Next, consider the following auxiliary profile RY,. The set X; = {z € X, i €
K(x)}, ordered as in the proof of Proposition (5.4.14), is propped at the
bottom of R}. Then above X;, we have the set X. More exactly for i € IT(a;)
the order R} has the form R} = {x, aj_p,...,a;_1,a;, X;). Briefly the profile
Ry has the form:

b3 b3 b3
ao as e a1
ap al ... ap71
a1 ao e ap
I(ay) | H(ag) | -+ | (ap)

Some coalitions IT (a;) might be empty. Since the blocking B is laminable,
there exists a laminar supporting scheme K’ of some alternative a, for a profile
R/y. This alternative a does not belong to X. In effect, any alternative z € X
is rejected (at profile RY) by coalition K (x) (see the proof of Proposition
(5.4.14)). So we consider a restriction K'|X. A coalition K(z), z € X, by
definition consists of “opponents” of x with respect to a at the profile Rhy;
so K'(z) C K(z). Hence by minimality of the scheme K, we conclude that
K = K'|X. Let now a = a;. Then, for all agents ¢ ¢ II(a;), alternative a;_ is
located above aj, aj_1Rja;. Moreover since alternative a = a; is Pareto
optimal, then IT(a;_1) # 0. From here we conclude that K'(aj_1) C II(aj_1).
Additionally K'|(X U{aj_1}) is an elimination scheme of the set X U{a;_1}
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and in fact, extends the scheme K. However this extension might turn out
to be not minimal. To find a minimal scheme, we have to choose K (a;_1) C
K'(aj—1) somehow minimal. Thus we have at hand a minimal elimination
scheme X U {a;_1} which extends K. The fact that it is consistent with the
profile Ry is readily noted from the followed inclusion K(aj_1) C II(a;j_1).

Thus we proceed one step further with this procedure. l

The procedure I72 gives a constructive and efficient means both to check
a blocking’s laminability and to exhibit regular equilibria. We establish the
laminability of several classes of blockings by means of this procedure.

Let us give some examples of laminable blockings.

(5.5.6) Peleg Blockings. We recall that these are additive blockings
(see (4.2.6)) for which all participants have weight 1. Laminability of such
blockings is simple to establish. Let Ry be a profile and, for x € A, let

II(z) ={i € N, min R; = z}.

By supermaximality, IT(xz) B{z} for some z. Let K C II(z) be a minimal sub-
coalition blocking z; this means that |K| = f(z). If now we both exclude the
coalition K and the alternative x, the resulting blocking is a Peleg blocking
as well. Thus the line of reasoning (and the construction of an elimination
scheme) can be pursued till |A] > 2.

Note that the resulting elimination scheme satisfies the following property:
K(z)NK(y) =0 if x # y , which is stronger than the laminarity axiom C1
((4.4.5)).

(5.5.7) Holzman condition. The crux of the argument given above is
that the coalition K uses all its power to block x. Formally this means that
the weight of K is equal to the weight of . Can we devise this in a more
general case, that is when the blocking is not necessarily additive? Inciden-
tally, Holzman (1986) answered this question. He introduced a condition on
blockings, which we call the Holzman condition. Assume that K is a minimal
coalition blocking z (i.e. KB{z} and K' C K, K'B{z} = K = K'); then for
any partitions N = K UK'U K" and A = {z} U X' U X" either K'BX' or
KIIBXII.

(5.5.8) Proposition. If a blocking B is mazimal and satisfies the Holz-
man condition, then B is laminable.

We give a sketch of the proof. Proceeding as above in the Peleg case, we
start by finding a minimal coalition K which blocks alternative . Then we
exclude both K and z, bringing the set of agents to N' = N\ K, and the set
of alternatives to A’ = A\{z}. A blocking B’ is defined in the obvious way:
K'B'X' & K'BX' (where K' C N' C N, X' ¢ A' C A). By the Holzman
condition for B, B’ is maximal. We affirm that B’ satisfies the Holzman
condition as well. Let N = KUK'UK"UK" and A = {z,2'}UX"UX"" be
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partitions where K “minimally” blocks z, K’ “minimally” blocks z’. Applying
the Holzman condition to the block? (K, ), we conclude that either K" BX""
(and then everything is fine) or K'LIK" blocks {«"}LIX". In that case, KUK""
does not block {z} U X" and by the Holzman condition for the block (K', z")
we conclude that K"BX"'.

Thus the proposition’s assumptions are satisfied for the blocking B’, and
the proof is completed by induction.H

(5.5.9) Moulin Blockings. They are additive blockings, in which the
weight of each alternative is equal to 1. Every Moulin blocking is laminable
and the proof is quite simple. Let 7 be an agent whose weight is positive and
let £ = min R;. We exclude xz and substract 1 from the weight of agent .
The resulting blocking is a Moulin blocking as well and we pursue the same
line of reasoning. The resulting elimination scheme is such that all coalitions
are singletons.

We can give a kind of “qualitative” generalization of Moulin blockings. To
this end, one needs to introduce the following condition: let K BX, K'BX'
and (KUK")B(X UX'U{y}); then either KB(X U{y}) or K'B(X'U{y}). In
other words, this is a kind of “additivity” condition, in the following strong
sense, coalitions cannot increase their power by uniting. Danilov and Sot-
skov (1988) introduced a class of decomposable blockings, which contains
both Peleg-Holzman blockings and Moulin’s and their “qualitative” general-
izations.

(5.5.10) Maskin Blockings. We encountered these blockings in Exam-
ple (4.1.11) and in Example (5.1.10). They are also laminable. In order to
assert it, we explicitly exhibit a laminar supporting scheme of an arbitrary
stable outcome b € C'(B, Ry). We distinguish two cases.

In the first case: b = a, where a is the alternative which is blocked only
by the full coalition. Then, for z # a, we can take K (z) to be formed of any
single agent ¢, for which bR;x. This agent i exists due to the efficiency of
outcome b.

In the second case: b # a. Then K (a) = N, and for x # a,b the coalition
K (x) is chosen as in the first case.

In the second case, the resulting elimination scheme differs from those
considered in (5.5.6) and (5.5.9). Further and for the sake of brevity, we call
this kind of schemes links.

(5.5.11) Links. More exactly, a link is a minimal elimination scheme
K : X — 2V satisfying the following property: there is some distinguished
alternative zo € X such that |K(z0)| > 1 and the other coalitions K (z) C
K (z) consist of single agents.

2 For brevity, we call “block” any pair (K, X) € B consisting of a coalition K and
a subset of alternatives X.
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In order to generalize the Peleg-Holzman and Maskin blockings, we con-
sider blockings whose elimination schemes consist of disjoint links. These
blockings are defined through the following generalized Holzman condition:
let N = KUK UK" and A = X UX'U X" be partitions and the block
(K, X) be a link. Then either K'BX' or K"BX".

(5.5.12) Proposition. Let a blocking B be mazimal and satisfy the gen-
eralized Holzman condition. Then B is laminable and any associated minimal
elimination scheme consists of disjoint links. B

In Proposition (5.7.1) we shall show that for neutral blockings the gener-
alized Holzman condition is also necessary for laminability.

(5.5.13) Example of a More Complex Blocking. There are lam-
inable blockings, whose elimination schemes have a more complicated struc-
ture, for they cannot be decomposed into disjoint links. Let there be four
agents and four alternatives, A = {z,y, z,u} and the following additive block-
ing with weights:

n(1) =1, p(2) = p3) = p4) =1,

B(z) = B(y) =10, B(z) =2, Bu) =1.

This blocking is laminable. The following scheme
X ={z,y}, K(x) ={2,3}, K(y) =1{2,3,4},

is a minimal elimination scheme, but it is not a link.

5.6 A Necessary and Sufficient Condition of
Laminability

(5.6.1) We defined the notion of a laminable blocking in (5.5.4) in terms of
agents’ preferences. Now we characterize the property of laminability purely
in terms of blockings. To this end, we have to strengthen the supermaximality
property on the one hand and weaken the generalized Holzman condition on
the other hand.

Let us start by introducing the following notion.

(5.6.2) Definition. A pair (K,X) € B is called an érreducible block if
there exist a minimal elimination scheme K(-) : X — 2% and zp € X such
that K = K(zo) D K () for any 2 € X. The coalition K (zo) is called the
base of the irreducible block K ().

For instance, a link is an irreducible block.

Obviously any minimal elimination scheme can be written as a disjoint
union of irreducible blocks.
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We consider now the following L-condition on a blocking B. Let (K, X)
be an irreducible block, |[K| > 1, and N=KUK'UK", A=XUX'uX"
be partitions. Then either K'BX', or K"BX", or KB(X U {z'}) for any
z' € X', or KB(X U{z"}) for any 2" € X".

(5.6.3) Theorem. A blocking B is laminable if and only if it is super-
mazimal and satisfies the L-condition.

Proof. Necessity. Let B be a laminable blocking. By the Theorem (5.5.5)
(see 1) = 2)) B is supermaximal. Suppose that the L-condition is violated.
Then from supermaximality we have K'B(X'\{z'}) and K"B(X"\{z"}).
But then one can construct a minimal elimination scheme of the set X'\ {z'}
with coalitions from K’ (and analogously for the set X"\ {z"'}). Together with
the scheme K this gives a minimal elimination scheme K of the set A\{z’, 2" }.
Now one can take the preference profile Ry as in the proof of Theorem
(5.5.5) so that II(z") D K', II(z") D K" and II(z'"), II (z") intersect K (xo).
Since the L-condition holds, the procedure II2 carries to the end and gives
K(2') C II(2') (or analogously for z'). If K(z') C K(zp) we would get a
contradiction with Lemma (4.4.6) that K (zo) blocks X U {z'}. Otherwise
K(a') ¢ K' and again by the same Lemma K'BX’, which contradicts the
assumption.

Sufficiency. We show that if a blocking B is both supermaximal and
satisfies the L-condition, then the procedure II2 carries to the end at any
given profile Ry . Suppose we are at step k and we have a minimal elimination
scheme K(+) : X — 2V |X| > 1. We show that we can go to step k + 1 and
can discard an additional alternative.

First we will get an auxiliary fact.

(5.6.4) Lemma. Let K : X — 2V be both a minimal elimination scheme
and an wrreducible block with base K. Suppose K' is such that K' C K and
K'# K, then K'B{z € X, K(z) N K' # 0}.

Assume the converse and take a minimal coalition K' # K, K' C K
which blocks the set {x € X, K(z) N K' # 0}. Then coalition K(z) N K',
where x € X, blocks the set of alternatives y, such that K(y) C K(z) and
K(y) N K" # 0 (for K(z) # K this follows from both almost-additivity and
minimality of coalition K'). So, one can construct a new elimination scheme
K, imbedded in the scheme K, by setting K(z) = K(z)NK' if K(z)NK' # 0
and K(z) = K(z) otherwise. Since (K, X) is an irreducible block, then the
scheme K(-) is not equal to the scheme K(-). This contradicts minimality of
the scheme K(-).H

Now, we come back to the proof of Theorem (5.6.3). Denote by

I(z) = {i € N,min(R;|K = z},z € X.

Let (K1,X4), ..., (Km, Xm) be a set of irreducible blocks of scheme K(-). We
successively consider three cases.
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The first case. There exist both # € X and an irreducible block
(Kj,Xj), j € {1,...,m}, such that IT(z) N K; # () and K;B(X; U {z}). We
assert that the scheme K can be extended to X U{xz} such that K(z) C II(x).
K(z) can be chosen to be equal to {i} where i € II(z) N K. One only need
check condition C2 (recall our definition of an elimination scheme in (4.4.5)),
as obviously both condition C1 and minimality of the extended scheme are
fulfilled. Let us check that the coalition K(z'), where ' € X U {z}, blocks
the set {y € X U{z}, K(y) C K(z')}. This is true when i ¢ K(z'). Now, let
i € K(z'). We check that K(z') blocks the set {z}U{y € X, K(y) C K(z')}.
Since i € Kj, then due to Cl1, K(2') C K;. We know that K blocks
X U {z}. Moreover by Lemma (5.6.4), K;\K(z') does not block the set
{y € X;, K(y) N (K;\K(z")) # 0}. So from almost-additivity, K (z') blocks
{r}U{y € X;, K(y) C K(")}. B

The second case. There exists an alternative z € X, such that the
coalition IT(x) blocks the set {2} U [Uk,cpm(,) Xil-

We assert, in this case, that the scheme K can be extended to X U {z}.
To this end, we take a minimal coalition I C II(z), which blocks the set
{z} U [UKan X;]. If IT coincides with one of the coalitions K, then we are
back to the first case. One can then set K(x) = {i} for any agent i € II.
Otherwise, we pose K(z) = II. Clearly in both cases, we end up with a
minimal elimination scheme of X U {z}.

The third case. Now suppose that neither the first nor the second case
obtains, that is:

a) whatever x € X, the coalition IT(z) does not block the set C(z) =
{2} U Uk, crre) Xils

b) if K; NII(x) # 0 then K; does not block X; U {z}.

We show that this contradicts the L-condition. In order to do this we have
to play around with our blocks. We consider only the blocks, which are not
contained in some II(x), * € X, among the blocks (K, X;). More precisely,
we associate to every alternative € X, both the set

C@) ={=tul |J X/
K;CII(x)
and the coalition
o(z) = M(z)\[ |J UK.
K; 7 I(x)

This done, we end up with several blocks (K1, X1), ..., (Kp, X,), whose K is
contained in no I7(z). For these the following holds,

].) N = (uzeyﬂo(l')) |_|K1 L...u Kn,
2) 4 = (,exC(@) U Xy U ..U X,
3) IIy(x)BC(z) for any x € X (see a));
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4) (K;, X;) are irreducible blocks, 1 < j <n, |K;|>1;
5) K;B(X; U{z}) if K; NII(z) # 0 (sce b)).

By construction, there is no II(z) which contains K;. Therefore, for any
given j (1 < j < n), we can find two different alternatives z; and 2, from X,
such that K; blocks neither sets X; U {z;} or X; U{z} (see property 5)).
We show (below, see Corollary (5.6.6)) that there exist two alternatives zg
and z, € X independent from j, which satisfy this previous condition. First
we start by establishing the following auxiliary result. We denote

V; ={z € X, K;B(X; U{z})}

for every j.

(5.6.5) Lemma. FEither Y; C Y orY; CYj.

Proof. Assume the converse, that is that Y does not belong to Y; and Y
does not belong to Y;. In other words, there exist € Y;\Y} and 2’ € Y/ \Y}.
The inclusion = € Y \ Y/, implies that

K;B(X;U{z}), K;B(X; U{z}),
while 2’ € Yj:\Y; means that
KyB(X;U{z'}), K;B(X;U{z'}).
Almost-additivity implies that
(K; UK;)B(X; U X U{z,z'}).
And superadditivity (i.e. B2) implies that
(K; UK;)B(X; UXj U{z,2'}).
We have a contradiction. H

(5.6.6) Corollary. There exist two alternatives xo, xj € X such that for
any 1 < j <n the coalition K; blocks neither sets X; U {zo} nor X; U {z;}.

Indeed, let Y, be a minimal set among Y7,...,Y,. By Lemma (5.6.5),
Y;, C Yy, for all j. Following the line of reasoning appearing after property
5) above, |Yj,| > 2.

Last part of the proof of Theorem. We are ready now to exhibit
two coalitions K', K", two sets X', X", and two alternatives z’, z” for
which the L-condition is not fulfilled. To this end, we take the alternative
zo as in Corollary (5.6.6). From property 3), the pair (IIy(zo), C(zo)) does
not constitute a block. Let us now complete this pair (IIo(zo), C(z0)) with
elements (K, X;). We stop as soon as adding any remaining block (K}, Xy)
makes the coalition ITy(z)UK;U... block C(zo)UXj... . One can assume that
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K' = Hy(x9)UK 11 UKgy2U...K,, does not block X' = C(xg)UXsy1U...UX,
but K’ U K}, blocks X' U X, for any k, 1 <k < s.

We do the same for the pair (ITp(z(),C(z()) and the left over pairs
(K1,X1), ..., (Ks, Xs). We end up with a pair (K", X""), which is not a block.
Some blocks (K7, X1), ..., (K¢, X;) might possibly remain. And, in fact, there
remains just one block (K1,Xy).

Proof. Why should ¢t > 17 If ¢t = 0, we would have two partitions N =
K'UK" and A= X"UX" and this would contradict the maximality of B.

Why should ¢ < 1?7 If ¢ > 1 we would have two blocks (K' U K, X' U
X1), (K" UKy, X" UX,) and may be still several blocks (K3, X3) and etc.
This contradicts B2 and B3. Thus ¢t = 1.

Now we have:

A) an irreducible block (K1, X1), |Ki| > 1 (see 4));

B) two pairs (K’, X'), (K", X") which are not blocks and which associ-
ated to (K1, X;) yield a partition of (N, A);

C) two elements xg € X' and zo € X" such that

KlB(Xl U {1‘0}), Klp(Xl U {1’6})

However this contradicts the L-condition and proves the sufficiency asser-
tion. This ends the proof of the theorem. W

There are some important and particular cases for which the L-condition
simplifies and in fact, boils down to the generalized Holzman condition or
Holzman condition. One of those cases is when agents are weak (see below),
another one is when the blocking is neutral (see Section 5.7).

(5.6.7) Corollary. Let a blocking B be such that all agents are weak (see
(2.4.3) . Then the following assertions are equivalent:

a) B is laminable,

b) B is mazimal and satisfies the generalized Holzman condition,

c) B is mazimal and satisfies the Holzman condition.

We can give an additional important result in the case of weak agents.

(5.6.8) Theorem (Holzman). Let B be a mazimal blocking with weak
agents. A strongly consistent mechanism = (-) € C(B,-) exists if and only if
the blocking B satisfies the Holzman condition.

The reader will understand the proof of this result after reading that of a
similar in spirit theorem about neutral blockings presented in the following
Section.

5.7 Neutral Laminable Blockings

Laminability issues and existence of core SC-mechanisms issues are essentially
simplified in the case of neutral blockings.
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(5.7.1) Proposition. A neutral blocking is laminable if and only if it is
mazximal and satisfies the generalized Holzman condition.

Proof. By Proposition (5.5.12), it suffices to check the generalized Holz-
man condition. Let there be two given partitions N = K U K' U K" and
A=XUX"UX"and let (K, X) be a link. Suppose the generalized Holz-
man condition does not hold, then by Theorem (5.6.3), coalition K blocks,
say X U {z'}, where 2’ € X'. Let K = K(z) and ¢ be an arbitrary agent
from K. Since links are minimal, the coalition K'\{i} does not block the set
{z € X, K(x) # {i}}. But then almost-additivity implies that agent ¢ blocks
the set {x € X, K(z) = {i}}U{z'}. Neutrality of the blocking means that the
alternative z' can be replaced by zg. Then {i}B{z € X, K(z) = {i}}U{zo}.
And this contradicts the fact that the link (K, X) is minimal. B

(5.7.2) Thus we can decompose any minimal elimination scheme for a
neutral laminable blocking into disjoint links. Proposition (5.7.1) helps de-
scribe fully neutral and anonymous blockings, which are laminable. Namely,
let n = |N|, m = |A|. Then the numbers n and m should satisfy the following
equality:

m =mg + kn,

where k is a non-negative integer and my is a divisor of n 4+ 1. For example,
if n =4, then m =1,5,9,13,17, ....;

if n=>5,then m =1,2,3,6,7,8,11,12,13, ....;

if n =6, then m =1,7,12,19,25, ....

We can see from this list that laminable blockings as rare as prime num-
bers among integers.

We turn now to the issue of existence of core SC-mechanisms for neutral
blockings. Then the theorem from (5.5.5) can be stated in a sharper form.
Recall that an equilibrium profile R% of a mechanism = : LY — A corre-
sponding to a preference profile Ry is called regular if Ry, <, Ry, where
a=m(RYy).

(5.7.3) Theorem. Let B be a mazimal neutral blocking. The two follow-
ing assertions are equivalent:

1) there ezists an SC-mechanism w(-) € C(B,-) which admits, for any
profile of preferences, a reqular equilibrium profile;

2) the blocking B satisfies the generalized Holzman condition.

Proof. The implication 2) = 1). From Proposition (5.7.1) the blocking
B is laminable. Then Theorem (5.5.5) yields 1).

We prove the implication 1) = 2). Let there be two partitions N =
KUK UK" and A = X UX'U X", in which the block (K, X) is a link.
Let zp be a distinguished alternative in the link so that K(z¢) = K and let
K=35,US,, 81 #0, S # 0. We consider the profile Ry
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X * * X
XII XI
XII XI XII XI
Ry = To | To
X' | nzo | oo x”
K | S | So | K"

(The alternatives within the sets X, X', X" are ranked arbitrarily in the
member’s rankings.) Let R% be an equilibrium profile of the mechanism
7(-), both corresponding to the preference profile Ry and “similar” to it,
m(RY) = a and Ry =, Rn. Obviously, @ ¢ X. Since the profile Ry is
symmetrical, one can without loss of generality assume that a € X'.

There are two possible cases:

1. L(l‘o,R;{) = L(Z’U,RK)

2. L(l‘o,R;{) 7é L(Z’U,RK)
We show below that case 2 is impossible, and if case 1 obtains, then either
K'BX' or K"BX". In order to investigate these cases, we start by establish-
ing the following fact.

Denote by Z; = {z € X, K(z) = {i}}; Z; is i-th “column” of the link
(K, X). We assert that

{i}BL(z,R}) for any i € K, z € Z;.

In fact, if {i}BL(z, R}) for some i € K and z € Z;, then the remaining agents
N\{i} can force the outcome to be z (and thus gain with respect to outcome
a!). Therefor they use the following ranking R’ = (2 > L(z,R)\{z} >
A\L(z, R})). Then the core of the resulting profile RY, = (Rﬁ\f\{i]d R}) con-
sists of the single element z. So the outcome 7(Rjy) = 2 >n\(;3 @ and this
contradicts the fact that profile R}, is an equilibrium profile. In particular,
it follows from here that L(zo, R}) D Z; for any i € K.

Now let us investigate case 1. The equality L(zg, R};) = L(zo, Rx) and
the fact that L(zo, Rf) D Z; for any i € K means that L(zo, R}) = L(zg, R;),
i € K. We show that then K" BX". Suppose the converse. Then we check
that the coalition K’ LU S; is better off when its members set alternative xg
over X' in the profile Ri'ys,:

Ri=(x=z0>=X'),i€K'; R,=(»x0>X»2;),i€8.
Let us consider the profile Ry = (R s, RS, k). We assert that
C(B,Ry) Cc X".

Proof the assertion. We check that all alternatives outside X" are rejected
by some coalition.
a) The set Z; is rejected by the corresponding participant i.
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b) The alternative zo is rejected (at the profile R) by the coalition
K'UK. Indeed, (K'U K)B(X'U X) because the blocking B is maximal and
K" does not block X".

c) Alternatives from X' are rejected by the coalition K’ U S;. Indeed,
SoB({zo} U (L;es, Zi)) because a link is minimal elimination scheme. Since
we assume that K" does not block X" then (K’ .S;) blocks X' U (| | Z;)
by supermaximality of B.

This proves the assertion.

Since 7 is a core mechanism, the outcome w(R;) belongs to X" and
therefore it is strictly better than a for the coalition K'11S;. This contradicts
the assumption that R} is an equilibrium profile and ascertains that, in case
1, we have K"BX".

We now examine case 2. According to what we have proved above, the
ranking R} of every agent ¢ € K is such that the set Z; and possibly some
set Y, of external elements, are placed under zo. Moreover {i}BL(z, R})
for any z € Z;. Since the profile R}, is “similar” to Ry, then ¥; N X = 0.
Moreover, Y; N L(z, RY) = (0 because if not, by neutrality, we would have
{i}B(Z; U {zo}). This contradicts the definition of a link. Thus the ranking
R} takes the form R} = (x = zo = Y; = Z;). Take then any agent i € K
for which Y; # 0. The coalition K\{i} does not block the set X\Z; (by
minimality of a link). The coalition K \{i} U{i} = K does not block the set
X UY; (since B is neutral). Under these conditions, the coalition K’ K" can
force the outcome o, wherewith it gains with respect to outcome a. To this
end, this coalition will settle for the ranking R’ = (X > Y; = A\(XUY;)). At
profile Ry = ( R g, R¥), the core consists of the single point zg, since
(K'UK")B(A\(X UY;)) and (K'U K" U {i})B(A\(X\Z;)) (by maximality
of B). Thus the outcome 7(Ry) = 2o >x'uk~ a which contradicts the fact
that R} is an equilibrium profile. The case 2 is therefore impossible. l

i€S,

(5.7.4) In the special case where the blocking is not neutral, but the
agents are weak (see the previous section and Holzman’s theorem), then in
the link (K, X) the sets Z; = (). In this case, the requirement of existence
of an equilibrium profile “similar” to the true one and which does not allow
“littering” lower contours L(zg, R}) by elements of Z;, j # i, becomes su-
perfluous. As for the rest, a simplified but essentially similar line of reasoning
proves Holzman’s theorem (5.6.8).

5.A Implementation via Strong Equilibria

(5.A.1) We consider here the conditions under which a given SCC can be
implemented through the strong equilibria of some mechanism. As usual,
N denotes the set of participants, A denotes the set of alternatives, and
7 ¢ [lien Si — Ais amechanism. A strategy profile sy = (s7) is a strong
equilibrium if for any coalition K’ C N we have the inclusion
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m(Sk,sy_k) C L(m(sy), Rr).

A strong-equilibrium outcome correspondence (SEOC) of a mechanism
T is

Eq(m) = {(Rn,a),3sy € Sy s.t. m(Sk,sn_k) C L(a, Rg) VK C N}.

An SCC F : LN = A is strongly implementable if F = Eq(r) for some
mechanism 7. The target of this section is to characterize strongly imple-
mentable SCCs.

The simplest condition for strong implementation is monotonicity (see Re-
mark (2.3.3)). This condition is necessary but, of course, not sufficient. Below
we give a few finer necessary conditions, which prove to be also sufficient.

(5.A.2) Necessary Conditions for Strong Implementation. In or-
der to formulate our conditions, we provide a few more notations. Fix some
mechanism m:Sy — A, and let F' = Eq(n) be its SEOC.

Let (Rn, a) be a pair where Ry is a preference profile, and a € A. Denote
as Sy (Ry,a) the set of all strong equilibria s%; in the game G(7, Ry) such
that w(s%) = a. This set is non-empty if and only if (Ry,a) € F = Eq(r).
The projection of Sy (Ry,a) C Sy on Sk is denoted Sk (Rn,a). In other
words, s§. belongs to Sj (Rn,a) if s} can be extended to sy € Sy (Rn,a).
Of course, in this case

w(sk,SN—k) C L(a, RN_K). (5.1)

(5-A.3) Definition. Given any SCC F, we call the map {n:N — F a
situation. In other words, a situation is a family ((RY,a’)) of elements of
F C L% x A parametrized by participants ¢ € N. In a situation &y a
participant i sends the message & = (RY;, a’).

Let &y be a situation for the correspondence F' = Eq(w). Assume we group
the “like-minded” participants, that is those who send the same message. This
forms a partition N = K; II ... IT K,; all the members of a coalition K send

the message (R{V, a’). Define S*(£n) as the following product
S*(én) = Sk, (Ry.a') x ... x Si (R, a™) C Sn.

Finally, set e, (£x) = (S*(€n)) C A. Since each pair (R, a’) belongs to
Eq(m) the set S*(£n) is non-empty as well as ,({x). Moreover, we see from
(5.1) that e-(En) C L(aj,Rg\,_Kj) for any j =1,...,m. If we set

/\(fN) = L(alvR]lV—Kl) n..n L(am)Rﬁ—Km)v

then e,(En) C A(€n) for any situation £x. Note that the definition of the
correspondence A : FN = A does not call upon the mechanism 7.
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We are interested in the sets e,(&n) for the following reason. Let a be
an element of €, (£x). Then a is an equilibrium outcome for any preference
profile in which a is situated “high enough”. We give a more precise assertion
just below.

(5.A.4) Proposition. Let Ry be a preference profile, £n be a situation,
and a € e;(EN). Suppose that for any non-empty coalition K the inclusion
er(*K,EN—k) C L(a, Ri) holds. Then (Rn,a) € Eq(n).

Proof. By definition, a € e,({x) means that a = w(s}) where s}y =
(k> 5 ), and SJI'(]_ € S}}j(Rf\,,a]’) for j = 1,...,m. We show that s} is a
strong equilibrium in the game G(7, Ry ). Suppose that some coalition K de-
viates from this strategy and indeed proposes to use another strategy s . Ex-
tend si to sy € Sn. Obviously, the strategy profile sy is a strong equilibrium
at some preference profile @y (for example, when the alternative 7(sy) is the
best one for each participant). Therefore m(sk, sh_x) € €x (Ui, {n—K) where
¥ = (Qn,7(sn)) for i € K. Due to the assumption underlying Proposition
(5.A4), ex(Vk,én—K) € L(a,Rk). Hence n(sk,sh_g) € L(m(sk),Rn) for
any non-empty coalition K, and s} is a strong equilibrium.l

(5.A.5) Let us sum up omitting any reference to the mechanism 7. Sup-
pose that SCC is strongly implementable. Then, for any situation {n € FN,
there exists a set e(éx) C A (i.e. there exists a correspondence e:FN = A)
such that the three following properties are satisfied:

1) e(n) is non-empty for any situation &y;

2) e(én) C A(&w) for any situation &p;

3) if a € e(én), and Ry is preference profile such that (£, énv—k) C
L(a,Rn) for every non-empty coalition K and every &, then (Ry,a) € F.

(5.A.6) Corollary. Assume that SCC F be strongly implementable. Then
for any partition N =K;11..11K,,, and a family (RY;,a'),...,(R%,a™) of pairs
from F, the intersection L(a', Ry_j )N ... L(a™, RR}_j ) is non-empty.

This is a formal consequence of the properties 1) and 2). B

Monotonicity is a formal consequence of the properties 1)-3) as well.
Indeed, let (Ry,a) € F, and R)y be another preference profile such that
L(a, R}) D L(a, R;), for any i € N. Form the message { = (Rn,a) and con-
sider a situation &y = (&, ..., ). Then A({n) = L(a, Rn) = {a}; because of
1) and 2), e({n) = {a}. Further, A\({),{n-K) C L(a, Rk ), hence (see the
property 2)) e(x,én—k) C M€k &v—K) C L(a,Rix) C L(a, Rik) for any
coalition K and &j. From 3) we conclude that (Ry,a) € F. This proves the
monotonicity of correspondence F'.H

In some sense, the necessary properties 1) — 3) are a far-reaching general-
ization of monotonicity. We assert that these properties are also sufficient for
strong implementation. More exactly, let F' be a SCC such that there exists a
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correspondence € : FN = A, with the properties 1) —3). Then F is strongly
implemented by some mechanism 7., which we construct below.

(5.A.7) Construction of an Implementation Mechanism. Suppose
F is an SCC, and suppose that ¢ : FN = A be a correspondence fulfill-
ing property 1) (that is (&n) is non-empty for every situation &n). The
mechanism 7. is set-up as a composite mechanism (see (1.5.10)). The basic
strategies of this mechanism consist in pairs (Rn,a) € F. Suppose that par-
ticipants send messages &;; then we have a situation &y = (&;,7 € N). Given
this situation, a final outcome of the mechanism . will be defined using a
roulette with values in the set e({n). Note that the set £(£nx) is not empty
by property 1).

The SCC implemented by the mechanism 7. is described in the following
proposition.

(5.A.8) Proposition. A pair (Rn,a) belongs to the correspondence
Eq(me) if and only if there exists a situation Ex € F such that a € €(En)
and inclusions €&y, én—K) C L(a,Rk) hold for any non-empty coalition
K C N and every &

Proof. In one direction, the assertion is almost obvious: if a is strong
equilibrium outcome in the game G(m,Ry), then it suffices to take £  to
be the “basic part” of the equilibrium strategy. Since the coalition K can
force any element from (&, {n— k) to be an outcome, we have the inclusion
e(€y,én—k) C L(a,Rk). The converse implication is simpler: suppose we
have a situation £y as in Proposition (5.A.8), then it suffices to complete
¢y adding a “roulette” strategy, which yields a as an outcome (recall that
a € €(&n)). Then we have a strong equilibrium since the following inclusions
hold, e(§k,én—k) C L(a, Ry ).B

(5.A.9) Corollary. Suppose a correspondence F has the property 2) then
F C Eq(m.).

Proof. Let (Rn,a) € F. We show that (Rn,a) € Eq(r.) using Proposition
(5.A.8). We choose as &y, the situation (&, ...,£), where £ = (Rn,a). Due to
the property 2), e(énx) C AMén) = L(a, Ry) = {a} which jointly with the
property 1) yields ({n) = {a}.

Let now K be a non-empty coalition. We prove that e(&k,{n—x) C
L(a,Rk)- Let £ = (€, En—k) be a new situation; let its associated parti-
tion have the form K;11..., where K D N —Kj and (RL,a') = (Rn,a). There-
fore A({y) C L(a,Rk), and because of the property 2) (&) C A(&y) C
L(a, RK).

(5.A.10) Corollary. Suppose a correspondence F has the property 3).
Then F D Eq(r.).

Proof. Let (Rn,a) € Eq(m.) and a situation &y be as in Proposition
(5.A.8). Then property 3) states that (Ry,a) € F. B
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We sum all this up in the following assertion.

(5.A.11) Theorem. An SCC F is strongly implementable if and only if
there exists a correspondence ¢ : FN = A satisfying the properties 1)-3). B

(5.A.12) Modification of the Criterion. The criterion of strong im-
plementation, which we obtained above, is not satisfactory. In fact, it says
nothing about whether there exists a correspondence ¢ at all. We try here
to provide some more satisfactory answer to this issue.

Let F : LN = A be an SCC. Consider the set of all correspondences ¢ :
FN — A satisfying properties 2) and 3). This set is not empty: for example,
the empty correspondence satisfies these conditions. Any union of two (or
more) correspondences in this set satisfies these conditions as well. Therefore
there exists a correspondence e : FN = A satisfying the properties 2) and
3) and which is maximal (by inclusion). Of course, in general, the condition
1) can be violated.

(5.A.13) Theorem. An SCC F is strongly implementable if and only
if the correspondence e satisfies the condition 1) (that is, for any situation
En € FN | the set ep(£n) is nonempty).

Proof. If ep satisfies 1) then by Theorem (5.A.11), F' is strongly im-
plementable. Conversely, if F' is strongly implementable then by Theorem
(5.A.11), there exists a correspondence ¢ satisfying the conditions 1) — 3).
But then ep D € also satisfies 1).H

(5.A.14) The criterion given in Theorem (5.A.13) improves on the previ-
ous one. However, we still do not know what the correspondence ep should
look like or how it could be constructed. We provide below a constructive
way of generating this correspondence. Namely, we proceed inductively. We
form a sequence of correspondences g D €1 D ..., whose limit €., = Ngey is
equal to ep.

We start this sequence by setting eg = A, where the correspondence &g
tautologically fulfills condition 2). However, in general, it does not satisfy
condition 3). In order to come closer to fulfilling condition 3), we construct
a new correspondence €; as follows:

e1(én) = {a € g9({n) such that a € F(Ry) as soon as
L(a, Rk) D eo(&x,én—K) for any non-empty coalition K and every & }.

Obviously 1 C &g, satisfies 2); but in general e; does not satisfy 3).
Thus we repeat the operation and form es and so on. Suppose we have
constructed a correspondence €, we form the correspondence €41 where we
take as situation &y

er+1(En) = {a € ex(En),a € F(Ry) for a preference profile Ry such that
L(a,Rk) D er(€y,En—k) for any non-empty coalition K and every & }.
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So we are left with a decreasing sequence of correspondences, A = g9 D

€1 D ...D € D ..., and define e, = Nier. Note that this sequence becomes
stationary after some step (because both A and N are finite); therefore g =
Ek+1 = ... = Eco and €4, satisfies the conditions 2) and 3).

(5.A.15) Proposition. For any SCC F, the following equality holds:
EF = €x0-

Proof. Since the correspondence e, satisfies 2) and 3), then e., C ep.
The reverse inclusion obtains if we show that ep C ¢ for any £ > 0. It is
obvious that e C €9 = A. Suppose that the assertion is true, for some k. Let
us prove it for k + 1.

Let a € ep(€n); we need to show that a € eg41(€n). Due to the definition
of ex+1, we need to prove that a € F(Ry) for any preference profile Ry such
that L(a, Rx) D er(€),En—K), where K is a non-empty coalition and every
&1 The inductive proposition implies that e, D ep; therefore if L(a, Rx) D
ek (&, En—k) then L(a, Rk) D ep(xk,ENn—k)- Since the condition 3) is true
for ep, then a € F(Ry).1

Thus we are left with yet another form of strong implementation criterion.

(5.A.16) Theorem. An SCC F is strongly implementable if and only if
the correspondences €, (k =0,1,...) are non-empty-valued. B

So, we have the series of conditions. The most important condition is that
€0 = A be non-empty-valued. In essence, this is the assertion of Corollary
(5.A.6). If \(éx) = 0 for some a situation £y then the SCC F can not be
strongly implemented. If, on the contrary, A({n) # @ for any situation &y,
then we form the next correspondence £, and so on. The process ends either
when ¢, has an empty value (then F' is not strongly implementable) or when
€k+1 = € (then F is strongly implementable).

For an illustration, we suggest that the reader return back to the Theorem
(5.3.6). It asserts that if a blocking B is maximal then the core correspon-
dence C(B, ) is strongly implementable. There we explicitly constructed an
implementing mechanism (by the way, its construction is similar to that of
7e and is based on non-empty-valuedness of A). But one can choose another
way, that is to prove that the correspondence A\ satisfies condition 3) (the
condition 1) follows from supermaximality of B).

Bibliographic Comments

The idea of strongly consistent mechanism was introduced by Peleg (1978).
He also proposed the notion of an exactly strongly consistent social choice
function, as an answer to the Gibbard-Satterthwaite result about the ma-
nipulability of non-dictatorial voting schemes. Peleg’s idea consisted in con-
structing mechanisms for which “truth-telling”, whilst not necessarily an
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equilibrium strategy, would lead to a “good” equilibrium outcome. For such
mechanisms, truthful behavior became more attractive to agents. This idea
led to the procedure of elimination “bad” alternatives given blocking coef-
ficients of alternatives (see Sections 5.1 and 5.5). At the same time, Dutta
and Pattanaik (1978) and Maskin (1979) constructed other examples of ex-
act mechanisms. Oren (1981) studied the relationships between properties of
exact mechanisms and blocking coefficients. He introduced for the first time
the concepts of maximality and of almost-additivity of blocking coefficients
and showed that they are necessary for the strong consistency of a mecha-
nism (Proposition (5.3.2)) to hold. Additionally he established that using the
Peleg procedure any element from the core is attainable (Section 4.2).

Our presentation of the mechanism with tokens is probably new, albeit
Moulin (1983) describes a similar mechanism, in which the Peleg procedure
is used for “splitted” (weight dependent) agents and alternatives.

Theorem (5.3.3) about implementation of the core of a maximal blocking
is a generalization of the theorem by Moulin-Peleg (1982) on stable blockings.
We use here a simpler mechanism (see Danilov and Sotskov (1988)).

The results in Sections 4 and 5 obtain as generalizations of the results of
both Peleg (1978) and Holzman (1986). In our study of direct mechanisms, we
put the emphasis on core mechanisms, selectors of core correspondences (and
not on exact mechanisms). The main reason is that they are by definition
sufficiently reasonable mechanisms, moreover given a blocking they are easily
characterized (Section 4.6). Strong consistency of core mechanisms is closely
connected with elimination schemes (Section 5.5). These schemes appeared
in Peleg (1978), and also Holzman (1986), albeit in a somewhat rudimentary
form. The generalization of such schemes opens a wide class of laminable
blockings, whose core mechanisms are strongly consistent.

Holzman (1986) presents the first serious result about necessary condi-
tions for strong consistency. The theorem he proves, states that a blocking
with “weak” agents, which has a core SC-mechanism satisfies the Holzman
condition (see Theorem (5.6.8)). The two remaining and yet more general re-
sults on necessary conditions, namely Theorem (5.5.5) and Theorem (5.6.3),
are new.

The II12 procedure in Section 5 directly generalizes the Peleg procedure
and is essentially a sum of our work on strongly consistent mechanisms.

Necessary and sufficient conditions for strong implementation (stated
somewhat differently) were obtained by Dutta and Sen (1991a). Danilov and
Sotskov (1991a) proposed another condition described in Appendix 5.A. Suh
(1995, 1996) obtained similar results.
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acceptable mechanism 65

additive blocking 117

admissible pair 52

affine environment 86

affine preference 86

agents 1, 9

almost additive blocking 125
alternatives 9

— Pareto optimal (or efficient) 13
— stable 112

anonymous SCC 18

anonymous neutral blocking 121
antagonistic preference profile 156
Arrow Impossibility theorem 35,36

balanced blocking 138
balanced covering 138

base of irreducible block 169
basic property of blockings 31
[B-blocking 31

bi-essential alternative 63
binary relation 10

bliss point 79

block 31, 167

— irreducible 169

blocking 31

— acyclic 129

— additive 117

— almost additive 125

— anonymous neutral 121

— balanced 138

— convex 123

— generated by a mechanism 31
— laminable 163, 164

— Maskin 115, 167

— maximal 35

— Moulin 120, 167

— neutral 32

— Peleg 119, 166

— stable 114

— sub-additive 63

— supermaximal 131
Borda rule 16
— modified 41

3-cycle condition 129
canonical mechanism 34
CE-outcome 161

Clark mechanism 97
choice function 12
coalition 13

composite mechanism 33
Condorcet winner 15
constant mechanism 147
constant SCF 14
continuity axiom 140
convex blocking 123

core 112

— correspondence 115

— equilibrium 161

— equilibrium outcome 161
— mechanism 159

Demange Theorem 124
decisive participant rule 147
dictatorial mechanism 147
dictatorial SCF 14

direct mechanism 26
dominant strategy 74

— equilibrium 74
DS-mechanism 75

duple mechanism 87

Dutta corollary 66

E-consistent SCC 28
E-implemented SCC 28
efficient mechanism 95
effective region 76
elimination procedure I72 163
elimination scheme 126

— minimal 163

environment 28
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— affine 86

— single-peaked (or unimodal) 78
— transferable (or quasi-linear) 93
— universal 76

equilibrium

— competitive (or Walrasian) 69
— concept (or solution) 28

— core 161

— dominant strategy 74

— regular 160

— strong 146

— with threats 112

essential alternative 55

feasible allocation 69
filter 23

generalized Holzman condition 168
Gibbard-Satterthwaite theorem 39
Groves mechanisms 96-97

Gurvich Theorem 51

Harems lemma 141

Holzman condition 166

— generalized 168

Holzman Theorem 172

Hurwicz mechanism 108
Hurwicz-Schmeidler proposition 66

implementation of Walrasian equilibria
68

individual rationality 32

inefficiency measure 100

irreducible block 168

kingmaker 46
— mechanism 26

laminable blocking 164
laminar supporting scheme 162
L-condition 169

linear order 10

link 168

lottery 86

lower contour 11

Maskin blocking 115, 167

Maskin correspondence 21, 41

Maskin mechanism 59, 148

maximal blocking 35

maximal simple game (majority family)
23

mechanism (or a game form) 26

— acceptable 65

— canonical 34

— Clark 97

— composite 33

— constant 147

— core 112

— dictatorial 147

— direct 26

— DS (dominant strategy) 75

— duple 87

— efficient 95

— E-consistent 28

— Groves 96-97

— Hurwicz 108

- kingmaker 26

— left (or right)-dictator 79

— Maskin 59, 148

— Nash-consistent (or consistent) 45
— one-dimensional 87-88

— Peleg 149

— pivotal 98

— roulette I, 1.5

— strategy-proof 75

— strongly consistent 145, 147
— strongly consistent 147

— unilateral 87

— with tokens 149

— Walker 107

— weakly efficient 95

median 80

— classical 79

messages (or strategies) 26
minimal elimination scheme 163
minimal monotone SCC (MMSCC) 40
mixed strategy 53

Monjardet theorem 23
monotone SCC 20
monotonicity (of a blocking) 31
Moulin blocking 120, 167
Moulin Theorem 122
Mueller-Satterthwaite theorem 21
MR-property 63

Nakamura number 130

Nash-consistent (or consistent)

mechanism 45

Nash-implementable SCC 54

Nash equilibrium 45

neutrality of an SCC 18

non-manipulable (or strategy-proof)
SCF 38

no veto power property 60

normal strategy profile 152

oligarchy 114



one-dimensional mechanism 87-88
outcome function 26
outcome of a procedure 138, 164

Pareto rule 16

Pareto optimal (or efficient) alternative
13

Pareto-optimal (or efficient) SCC 17

Peleg blocking 119, 166

Peleg mechanism 149

Peleg theorem 123

pivotal mechanism 98

pre-equilibrium 51

preference 9-10

— aggregation 35

— affine 86

— profile 12

— single-peaked 29, 78, 83

— singular profiles 160

profile 12

proportional veto-function 121

random dictator 89
regular equilibrium 160
revealed preference 12
revelation principle 75
roulette mechanism 31, 46

Scarf condition 138

SCC (social choice correspondence) 15

SCF (social choice function) 13

SC-mechanism 145, 147

shuffling orders 11

simple game 23, 32, 130

simple majority 48, 146

simple majority rule 14

single-peaked preference 29, 78, 83

singular profiles 160

social choice correspondence (SCC) 15

— anonymous 18

— E-implemented 28

— minimal monotone (MMSCC) 40

— monotone 20

— Nash-implementable 54

— neutral 18

social choice function (SCF) 13

— non-manipulable (or strategy-proof)
38

sovereignty 17

stable alternative 112

stable blocking 114

strategy profile 26

strategy-proof mechanism 75

strategy-proof SCF 38

Index 191

strong equilibrium 146
strong-equilibrium outcome correspon-
dence 176

strong participant 67

strongly consistent (or SC) mechanism
145, 147

strongly implementable SCC 176
strongly monotone SCC 55
sub-additive blocking 63
superadditivity (of a blocking) 31
supermaximal blocking 131

supporting scheme 113

— laminar 162

theorem

— Arrow Impossibility 35,36
— Demange 124

— Dutta 66

— Gibbard-Satterthwaite 39
— Gurvich 51

— Holzman 172

— Monjardet 23

— Moulin 122

— Mueller-Satterthwaite 21
— Peleg 123

tokens mechanism 149
transferable environment 93
tree 83

universal environment 76
utility functions 9

veto-outcome 133
veto-procedure 133

— sequential (procedure II1) 136
veto*-procedure 135

Walker condition 102

Walker mechanism 107

Walrasian equilibria implementation
68-70

weak order 10

weak participant 60, 67

weakly efficient mechanism 95

zonoids 92



