
Dynamic consistency of expected utility under

non-classical(quantum) uncertainty

Danilov V.I.∗, Lambert-Mogiliansky A.†, and V. Vergopoulos‡

June 5, 2018

Abstract

Quantum cognition in decision-making is a recent and rapidely growing field. In this

paper we develop an expected utility theory in a context of non-classical (quantum)

uncertainty. We replace the classical state space with a Hilbert space which allows

introducing the concept of quantum lottery. Within that framework we formulate

axioms on preferences over quantum lotteries to establish a representation theorem. We

show that demanding the consistency of choice behavior conditional on new information

is equivalent to the von Neuman-Lüders postulate applied to beliefs. A dynamically

consistent quantum-like agent may violate dynamic recursive consistency, however.

This feature suggests interesting applications in behavioral economics as we illustrate

in an example of persuasion.

1 Introduction

Alternatives available in decision problems can often be analyzed in terms of a variety of

perspectives: a fur coat may be evaluated from an esthetical point of view or from the

point of view of animal suffering. A military intervention in Syria can be evaluated from a

geopolitical perspective or from a humanitarian one. Another type of example relates to the
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consumption of cigarettes: the immediate pleasure perspective contra the long term health

perspective. In order to assess an alternative we need to build a representation of it, a

“represented alternative” which is a mental construct1. Standard decision theory postulates

that we always are able to combine any relevant perspectives into a synthetic and stable

representation of the alternatives. However, it is also a common place for cognitive scientists

that we face difficulties when building our representation of a complex alternative. We

consider the alternative from different perspectives - one at a time. And most importantly

we are not always able to synthesize information from various perspectives into one single

coherent and stable representation of the alternative.

In this paper we are interested in decision-making under uncertainty and we want to

capture the difficulties people show in combining all relevant information by analogy with

incompatible properties in Quantum Mechanics. To many people it may appear unmoti-

vated or artificial to turn to quantum mechanics (QM) when investigating human behavioral

phenomena. However, the founders of QM, including Bohr and Heisenberg, were early to

recognize an essential similarity between the two fields:2 in both fields the object of investi-

gation cannot (always) be separated from the process of investigation. QM and in particular

its mathematical formalism was developed to respond to a general epistemological challenge:

how can one study an object that is being modified by the measurement of its properties? It

should therefore be viewed as truly legitimate to explore the value of the mathematical for-

malism of QM in the study of human behavioral phenomena - without reference to Physics.3

Of particular interest in our context is that this formalism allows representing agents subject

to the incapacity to simultaneously consider a choice alternative from all relevant perspec-

tives. For instance when evaluating the ”animal suffering” value of a fur coat, its esthetical

(subjective) value, that was well-determined in our decision-maker’s mind before considering

animal suffering aspects, may become “blurred” i.e., uncertain.

The classical approach to decision-making under uncertainty e.g., in Savage (1972) and

1Kahneman and Tversky (2000) write “the true objects of evaluation are neither objects in the real world
nor verbal descriptions of those objects; they are mental representations” a conception which they further
write is entirely natural for cognitive scientists (p. xiv).

2In particular Bohr was influenced by the psychology and philosophy of knowledge of Harald Höffding
(see Bohr 1971 and the Introduction in Bitbol 2009 for an insightful discussion).

3The human mind behaves in a wide array of weird manners. But it is not the weirdness of quantum
mechanics that makes it an attractive toolbox, but the fact that it is a most general paradigm for structural
contextuality (i.e., non-separability between the object of and the operation of investigation).
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Anscombe and Aumann (1963) builds on the notion of a state space S of states of nature.

Very roughly a representation of the world (a belief) corresponds to a probability distribution

on S. And the changes in belief following the acquisition of new information follow Bayes’

rule which can be given a behavioral foundation as shown in Ghirardato (2002) : Bayesian

updating secures dynamic consistency i.e., it secures that choices based on updated prefer-

ences are consistent with ex-ante preferences defined for the condition (event) that triggered

updating. There exists however massive evidence of violations of Bayes rule. One source of

violations is that measurements (in a broad sense) affect the object of measurement. Most

clearly this happens in quantum physics and it is the reason why some properties may be

incompatible. This is formally expressed in the non-commutativity of measurement opera-

tions which induces a non-Bayesian updating process. A related line of motivation appeals

to the growing interest for applications of elements of the mathematical formalism of Quan-

tum Mechanics to psychology, social sciences and in particular to decision-making (see e.g.,

Brandenburger and La Mura (2015), Khrennikov (2014) and Busemeyer and Bruza (2012)

for an overview of the field). The approach has been successful in explaining a large variety

of behavioral anomalies in decision-making ranging from cognitive dissonance, preference

reversal, conjunction fallacy, disjunction effects to framing effects.

In a recent book Akerlof and Schiller (2015) labelled a new term “Phishing equilibrium”

to express how markets systematically exploit the manipulability of real consumers with far

reaching implications for the efficiency and welfare properties of free markets. In a simple

economic example of a seller’s attempt to persuade a potential buyer, we show that the

quantum indeterminacy of beliefs implies a “manipulability” of economic agents much in

line with Akerlof and Schiller’s empirical evidence as well as with their understanding of

the underlying psychological mechanism: “Just change people’s focus and one changes the

decisions they make” (p.173).

In this article, we substitute the Boolean lattice of events with a more general lattice

of projectors in the Hilbert space as the suitable framework for modelling decision-making.

The notions are introduced progressively and require no previous knowledge of Quantum

Mechanics or Hilbert spaces. We show that a natural definition of a quantum lottery allows

for the formulation of decision theoretical axioms similar to the classical ones with one

exception. We need axiom A0 that secures the stability of preferences over lotteries defined
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over different perspectives (resolutions of the state space). This axiom (that we labelled “no-

framing”) is trivially satisfied in the classical world (all lotteries can be expressed in a single

finest partition(resolution) of the state space). We next show that the von Neumann-Lüders

projection postulate of Quantum Mechanics used as an updating rule is both necessary

and sufficient for dynamic consistency of preferences. In our context the von Neumann-

Lüders postulate arises from purely behavioral considerations that is from a requirement of

consistency applying to conditional (on new information) preference relations. Interestingly,

the specificity of non-classical uncertainty (also referred to as “contextuality”) is shown to

imply a failure of the so-called “recursive dynamic consistency” (a dynamic version of the

Savage’s Sure Thing Principle). This feature is exploited in an example to illustrate the

possible value of the results for behavioral economics.

There exists a few earlier works addressing quantum probabilities in the context of

decision-making. These include Deutsch (1999), Pitowsky (2003), Lehrer and Shmaya (2006),

Danilov and Lambert-Mogiliansky (2010) and Gyntelberg and Hansen (2012)). In partic-

ular Pitowsky writes about “betting on quantum measurements” but he is not working

with preference relations. Interestingly, he formulates a rule saying that the probability for

any specific outcome is independent of the specific measurement that yields it as one of its

possible results. This rule is very much in line with our axiom A0. Lehrer and Shmaya

propose a subjective approach to quantum probabilities but they do not work with quantum

lotteries. Danilov and Lambert-Mogiliansky develop an expected utility theory in a gen-

eral non-classical uncertainty context (ortho-modular lattices). A first distinction with the

present work is that instead of assuming the existence of a certainty equivalent, we build

on fundamentals which brings us closer to the approach of von Neumann and Morgenstein

(1944) and Anscombe and Aumann (1963). We also adopt the structure of the Hilbert space

which allows addressing more general type of lotteries.4 These steps are necessary to develop

the core contribution of the paper which is related to the dynamics of beliefs and choices

in response to new information in a non-classical uncertainty environment. Gyltenberg and

Hansen (2012) work with Hilbert space to develop an expected utility theory with subjective

4In Danilov and Lambert-Mogiliansky 2010, only direct measurement (orthogonal resolution of the unit)
were considered. In the present work we also address ”fuzzy” measurement by means of POVM (positive
operator valued measurements).
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events. Their static setting shows similarities with ours. However their analysis appeals to

a large number of axioms - 12 where we have 5 - and most importantly they do not address

the issue of dynamic consistency.

The present work is a contribution to both decision theory and the foundations of quan-

tum cognition. We extend previous works in two directions. First, we provide a complete

characterization of expected utility theory under non-classical (quantum) uncertainty: a

concise formulation of sufficient and necessary axioms in terms of preferences over quantum

lotteries. Most importantly, this construction allows for a transparent characterization of

dynamic consistency of choice behavior in such an environment. Finally, we discuss the value

of the approach for economics and illustrate it with an example of “Phishing for Phools”.

The paper proceeds as follows. First, we introduce the concept of quantum lottery

which gives us the opportunity to define basic elements of the mathematical formalism.

In section 3 we provide a straightforward construction and a complete characterization of

preferences over quantum lotteries satisfying some standard properties. We formulate the

corresponding axioms and derive our representation theorem. In section 4 we address the

issue of information updating and formulate our central theorem of dynamic consistency.

Thereafter we discuss the value of our results in economics and end with some concluding

remarks.

2 Quantum lotteries

We are interested in a decision-maker’s preferences over what we call quantum lotteries. In

this section we define the notion of quantum or Q-lottery. As for any lottery, the prize

that the DM obtains depends on the realization of some event which is the outcome of a

measurement, it is an uncertain payoff. And the lotteries described below (roulette, horse

and quantum lotteries) differ essentially in the type of measurement that is being performed.

Therefore we first need to clarify the meaning of measurement and in particular of a quantum

measurement. But we shall start by reminding basic facts about roulette lotteries and so

called ‘horse lotteries’.

Roulette lotteries

Hereafter we let X denote a set of prizes. A roulette lottery (with prizes in X) is defined
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by a finite collection of prizes x1, ..., xr together with the probabilities p1, ..., pr (pi are non-

negative real numbers with
∑

i pi = 1) for obtaining the corresponding prize. Such a lottery

can be written as the string l = (x1, p1; ...;xr, pr), but we prefer to write it as a formal sum

l =
∑

i xi ⊗ pi. We could think of it in the following way: a measurement in the form of a

‘roulette’ is performed and gives an outcome in the set {1, ..., r}. The probability of outcome

i is pi and, depending on the outcome of this ‘measurement’, a prize xi is paid.

Such lotteries can be identified with (simple) probabilistic measures on the set X. We

denote by ∆(X) the set of such measures (or lotteries). Under well-known conditions, von

Neumann and Morgenstern obtained that the utility of a lottery l =
∑

i xi ⊗ pi for the

decision-maker, henceforth DM, is given by a number U(l) =
∑

i piu(xi). Here u : X → R

is a ‘utility function’ defined on the set X of prizes.

Horse lotteries

The next concept is that of a ‘horse lottery’ (in the terminology of Anscombe and Au-

mann) or ‘act’ (in Savage’s terminology). A horse lottery is a mapping f : S → X from the

set S of ‘states of nature’ to the set X of prizes. A measurement is performed in the form

of a ‘horse race’ and, depending on the result of this measurement, the corresponding prize

is paid.

Again under suitable conditions the utility of a horse lottery f can be written as U(f) =∑
s psu(f(s)), where u : X → R is again a utility function, and p is a (subjective) probability

measure on the set S. A considerable simplification of the conditions was achieved by

Anscombe and Aumann when taking roulette lotteries as prizes. They define a horse lottery

as a function L : S → ∆(X). A measurement defines the state s of nature, after that a

drawing of the lottery L(s) performs which gives a resulting prize.

In order to smoothly move over to quantum lotteries, it is convenient to present horse

lotteries slightly differently. We denote by l(s, x) the corresponding probabilities for realiza-

tion of outcomes x in the lottery L(s). Now we can form the functions Lx : S → R by the

rule Lx(s) = l(s, x). And rewrite our horse lottery L as
∑

x x ⊗ Lx. Here the function Lx

can be understood as a plausibility (or as a potentiality) of getting prize x.

Generally, a finite family (Li, i ∈ I) of functions Li on a set S is called a positive decom-

position of unit if all these functions Li are non-negative and their sum
∑

i Li is equal to
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the function 1S identically equal to 1. One can understand such a family as a classical fuzzy

measurement device with the set I of outcomes; in a state s of nature this measurement

gives the outcome i with probability Li(s). If we associate a prize xi to outcome i, we obtain

a horse lottery L =
∑

i xi ⊗ Li.

Quantum lotteries

A quantum lottery is also a bet on the outcome of a measurement, but now a quantum

one. A measurement of some ‘observable’ is performed, and, depending on the result ob-

tained, our DM receives some prize. To formalize the notion of quantum measurement we

have to modify the notion of a state space. The set S is replaced by some Hilbert space

H. The notion of function on S is replaced by the notion of Hermitian operator. Below we

give precise definitions (a reminder of elementary notions about Hilbert spaces is provided

in Appendix 1). For now we only say that the main difference with the classical state space

model is that the Hilbert space model allows for measurements that cannot be performed

simultaneously i.e., they are incompatible with each other. Therefore the performance of a

measurement can modify the state of the system.

Quantum measurement

A quantum measurement device is modeled by a finite collection (Pi, i ∈ I) of Hermitian

operators such that

a) all Pi are nonnegative,5 and

b)
∑

i Pi = E, where E is the identity operator.

In Physics such a collection is called POVM (positive operator valued measure); we

prefer to speak about positive decomposition of unit (PDU). The elements of I are the

possible outcomes of the device; the operators Pi express the potentiality for realization of

the outcome i in a way similar to the functions Lx for horse lotteries (see above).

We shall distinguish between two classes of measurements. The first one consists of

von Neumann measurements (they are known also as projective measurements, direct

measurements, orthogonal measurements, first kind measurements, and reproducible mea-

surements). They are defined by the requirement that the Pi are orthogonal to each other,

that is PiPj = 0 for i 6= j. It is easy to see that in this case all operators Pi are projectors.

5A definition of nonnegative operators is given in Appendix 1.
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Conversely, it can be shown that if all Pi are projectors, they are orthogonal to each other.

The second and broader class of measurements includes (Qi, i ∈ I) such that Qi commute

with each other, that is QiQj = QjQi for any i, j ∈ I. We call such measurements internally

consistent. It is easy to see that orthogonal operators commute, so that von Neumann

measurements are internally consistent.

Examples of such measurements are ‘von Neumann measurements with a noise’. We make

a von Neumann measurement (Pi, i ∈ I) (with orthogonal Pi) and after having obtained

an outcome i, we use a roulette lottery li with values in a set X to determine the final

outcome x. Such a measurement device is modeled by the collection (Qx, x ∈ X), where

Qx =
∑

i li(x)Pi. Conversely, any internally consistent measurement can be represented as

von Neumann measurement with a noise.6

An example of more general measurements is provided by the notion of a compound

measurement. Suppose we have two von Neumann measurements devices, P = (Pi, i ∈ I

and Q = (Qj, j ∈ J). Then we can form the compound measurement PQ with the set of

outcomes I × J : we perform first measurement P , then perform Q and write the obtained

outcomes (i, j). If Pi commute with Qj, PQ is von Neumann measurement as well. However

in the general case, when P and Q are incompatible, the obtained measurement PQ is not a

von Neumann measurement. This construction is one of the justifications for considering non-

orthogonal measurements. Another line of justification relates to the possibility of defining

mixtures (see below) and restrictions (Section 4).

Quantum Lottery

As we already wrote, a quantum lottery is a bet on the outcome of a quantum mea-

surement. More precisely, a Q-lottery is a pair made of a quantum measurement device

P = (Pi, i ∈ I) (the base of the lottery) and the prizes associated with the corresponding

outcomes (xi, i ∈ I). We write such a Q-lottery as
∑

i xi⊗Pi. Intuitively the measurement

P is performed and depending on the outcome i that obtains, the agent receives prizes xi.

The set of Q-lotteries is denoted as QL(H).

A constant Q-lottery is a lottery of the form x⊗ E; it gives the prize x with certainty.

Any Q-lottery σ =
∑

i xi ⊗ Pi can be written in the canonical form
∑

x x ⊗ Qx, where

6Hermitian operators that commute can be diagonalized in same orthonormal basis.
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Qx =
∑

i,xi=x
Pi.

7 Let QLc(H,X) be the set of canonical Q-lotteries (or simply QLc(H)

because the specification of the set X does not play an essential role). Intuitively, the initial

Q-lottery σ and its canonical form only differ in the way we write them and therefore can

be considered as equivalent. Below we formulate this equivalence as our ‘no-framing’ axiom

A0.

As it is the case for classical lotteries, we can define mixtures of Q-lotteries, but we

restrict the mixture operation to canonical lotteries. Suppose that we have two Q-lotteries

in the canonical form: σ =
∑

x x ⊗ Px and τ =
∑

x x ⊗ Qx. Then we can construct a new

canonical Q-lottery as the mixture of the two (with weights α and 1− α) ασ + (1− α)τ :=∑
x x⊗(αPx+(1−α)Qx). The new lottery is interpreted as follows. First you use a “roulette

device” to determine which one of σ or τ will be played and thereafter you play one of them.8

(For instance, if x∗ ∈ X is an outcome never paid by τ , then Qx∗ = 0 and ασ+(1−α)τ pays

x∗ under the event αPx∗ .) The set QLc(H,X) of canonical Q-lotteries is a convex space. We

shall use this structure intensively in what follows.

3 Construction and characterization of ‘nice’ prefer-

ences

We are interested in preference relations over quantum lotteries that satisfy some ‘natural’

properties, familiar from von Neumann and Morgenstern, Savage, Aumann and others. We

call such preference relations “nice”. We start with a straightforward construction of nice

preferences, thereafter we formulate their properties (axioms), and finally we show that these

properties fully characterize nice preferences.

In order to construct preferences (in fact, to construct the utility of Q-lotteries), we

should specify two things. First, a utility function u : X → R. Second, a linear ‘belief ’

functional β : Herm(H)→ R which is

a) positive in the sense that β (A) ≥ 0 for A ≥ 0,

7Although the set X can be infinite only a finite number of Qx differ from 0.
8In the quantum case we do not in general have the equivalence - as in the classical case - with the

alternative interpretation of the mixture: play both lotteries and use the roulette device to select which
outcome determines the prize afterwards. This is because in the general case the two measurements implicit
in the lotteries need not be compatible.
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b) normalized in the sense that β (E) = 1.

With these two ingredients, we can define the ‘(u, β)-utility’ U(σ) = Uu,β(σ) of any

Q-lottery σ =
∑

i xi ⊗ Pi as

U(σ) =
∑
i

u(xi)β(Pi),

For Q-lotteries σ and τ we set σ � τ if U(σ) ≤ U(τ). Below we list some ‘nice’ properties

A0-A4 that this preference relation � on QL (H) possesses.

No framing

A0. For any σ, τ ∈ QL(H) with respective canonical forms σ′ and τ ′, σ � τ ⇔ σ′ � τ ′.

Axiom A0 follows from the fact that the utility of a Q-lottery σ =
∑

i xi⊗ Pi is equal to

the utility of its canonical form
∑

x x⊗ (
∑

i,xi=x
Pi). Indeed, the utility of the latter is equal

to
∑

x u(x)β(
∑

i,xi=x
Pi) =

∑
x

∑
i,xi=x

u(xi)β(Pi) =
∑

i u(xi)β(Pi) = U(σ).

This axiom is implicit in the Savage and Anscombe-Aumann frameworks. However, in

generalizations of these frameworks it must be imposed explicitly see e.g., Cohen and Jaffray

(1980). They formulate an axiom of ‘non influence of formalization’ very similar to our

axiom A0. There are also other works that reject that axiom in order to allow for framing

effects see Ahn and Ergin (2010).

Weak order

A1. The preference relation � is a weak order, that is, a complete and transitive binary

relation.

This follows from its representation via the utility U .

The next two properties assert that the preference relation is consistent with a mixture

structure on the set QL(H).

Independence

A2. Let σ, τ, ϕ ∈ QLc(H) be canonical Q-lotteries, and α ∈ [0, 1]. If σ � τ then ασ +

(1− α)ϕ � ατ + (1− α)ϕ.

Property A2 follows from the linearity of β.

Continuity
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A3. Let σ, τ, ϕ ∈ QLc(H), and σ ≺ ϕ ≺ τ . Then there exists α and β (0 < α, β < 1)

such that ασ + (1− α)τ ≺ ϕ and ϕ ≺ βσ + (1− β)τ .

Indeed, since U(σ) < U(ϕ) < U(τ), we have U(ϕ) > αU(σ) + (1 − α)U(τ) for some

α ∈ (0, 1) and U(ϕ) < βU(σ)+(1−β)U(τ) for some β ∈ (0, 1). So U(ϕ) > U(ασ+(1−α)τ)

and U(ϕ) < U(βσ + (1− β)τ).

Monotonicity

This property is the most subtle. It asserts, roughly speaking, that if we in a lottery

σ =
∑

i xi ⊗ Pi replace the prizes xi with better ones then the new lottery will be preferred

to the initial one. However, this formulation is too weak for our aims, and we formulate it

in stronger form. To do that we first note that we can define the canonical form not only

for ‘prize valued Q-lotteries’ but also for ‘roulette valued Q-lotteries’, that is for expression

of the form
∑

i li ⊗ Pi, where li =
∑

x x⊗ li(x) are roulette lotteries. The canonical form of

this lottery is
∑

x x ⊗ Qx, where Qx =
∑

i li(x)Pi. Let QL(H,∆(X)) denote the set of all

roulette-valued Q-lotteries. We use this to extend the preference relation to QL(H,∆(X))

as follows: for any σ, τ ∈ QL(H,∆(X)) with respective canonical form σ′ and τ ′, σ � τ

if and only if σ′ � τ ′. We next have to consider the derived preference relation �∆ on the

set of ordinary (roulette) lotteries ∆(X). For roulette lotteries l and m we set l �∆ m if

l⊗E � m⊗E. Here l⊗E denotes a constant Q-lottery, getting with certainty the prize l,

and similarly for m⊗ E.

Note that the preference �∆ on ∆(X) is represented by the affine extension of u from

X to ∆(X), that we still denote by u. Indeed, we have U(l ⊗ E) = U(
∑

x x ⊗ l(x)E) =∑
x u(x)β(l(x)E) =

∑
x u(x)l(x) = u(l), because β(E) = 1.

A4. Let σ =
∑

i li ⊗ Pi and τ =
∑

imi ⊗ Pi be elements of QL(H,∆(X)) with the same

base. If li �∆ mi for any i ∈ I then σ � τ .

This property can be considered as a strong version of the sure-thing principle of Savage.

It is a simple consequence of the formula U(σ) =
∑

i u(li)β(Pi) and of the non-negativity of

β(Pi).

Definition 3. A preference relation � on the set QL(H) of Q-lotteries is nice if it has

the properties A0−A4 (or satisfies the axioms A0−A4).
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The discussion above shows that a preference relation �u,β built with the help of a utility

function u on X and a linear functional β on Herm(H) is nice. Our first result asserts that

the reverse is also true.

Theorem 1. A preference relation � on QL(H) is nice if and only if there exist a

function u on X and a positive and normalized linear functional β on Herm(H) such that

�=�u,µ.

Moreover, if the preference � is not trivial (that is there exist Q-lotteries σ and τ such

that σ ≺ τ) then β is unique and u is unique up to a positive affine transformation.

The proof is in Appendix 2. We here provide a brief sketch. First, fix a measurement

device P = (Pi, i ∈ I). In the first stage of the proof, we use the primitive preference �

on QL(H) to construct another preference �P on the set QLP(H,∆(X)) of roulette-valued

Q-lotteries with base P . We view each such Q-lottery in QLP(H,∆(X)) as an Anscombe-

Aumann act from I to ∆(X). We next invoke the Anscombe-Aumann (1963) theorem and

obtain a utility function uP and a probability vector βP on I which provide us with a

Subjective Expected Utility (SEU) representation of �P . The second stage of the proof

involves showing that the various SEU representations are consistent with each other; that

is, that the functions uP are essentially independent of P and that the probability vectors

βP arise from a single belief functional β.

In a classical Anscombe-Aumann setting, it is straightforward to obtain the consistency

of the various SEU representations across different partitions of the state space because acts

are directly defined as functions from the state space to ∆(X). But suppose now that an

act is given by (E1, l1; . . . ;En, ln) where (E1, . . . , En) is a partition of the state space and

(l1, . . . , ln) is a corresponding collection of lotteries on X. Such an act induces a function∑
i 1Ei

li. Under an additional axiom requiring two acts inducing the same function to be

always indifferent, we again obtain the consistency of the various SEU representations across

the various partitions of the state space. Coming back to our nonclassical setup, it takes

a very similar axiom, namely A0, to obtain the consistency of the SEU representations

(uP , βP), across different PDU. The full representation result stated in Theorem 1 easily

follows. We next investigate some consequences of our result.

The shadow operator of a Q-lottery
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Let � be a nice preference relation on Q-lotteries. We fix some function u from X

to R. We call the shadow operator of a lottery σ =
∑

i xi ⊗ Pi the Hermitian operator

Sh(σ) = Shu(σ) defined as follows

Sh(σ) =
∑
i

u(xi)Pi.

We note that β(Sh(σ)) = U(σ), and consequently the utility of Q-lottery σ depends only on

its shadow operator. The notion of shadow operator is the equivalent of the notion of utility

profile in the classical framework. And in the same way the expected utility of an act only

depends on its utility profile. From here we could completely forget about Q-lotteries and

discuss the utility of Hermitian operators expressed by the functional β.

Trace and belief operator

There exists a remarkably useful way of representing the belief functional β by means of

a (Hermitian) operator of belief. For that we shall make extensive use of the concept of the

trace of an operator (and precisely here the finite dimensionality of H becomes important).

A reminder of the definition and properties of the trace is provided in Appendix 1. Of

particular value in our context are two properties: commutativity Tr(AB) = Tr(BA) and

the fact that the trace of any Hermitian operator is a real number.

Definition 4. We call a belief operator (or a cognitive state) any nonnegative Hermitian

operator with the trace equal to 1.

Given a belief operator B, we can define the functional β on Herm (H), setting β (A) =

Tr (AB) for any A ∈ Herm (H).

Lemma 1. 1) The functional β takes real values ;

2) β (A) ≥ 0 for A ≥ 0;

3) β (E) = 1.

Proof. It follows from the properties of the Trace operator see Appendix 1. �

As a consequence, we obtain that the functional β built on the belief operator B is a belief

functional. Moreover any belief functional has such a form (for a unique belief operator B).

In fact the formula (A,B) = Tr (AB) gives a scalar product (and thereby also the structure of
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an Euclidean space) on the real vector space Herm (H). Relying on well-known description

of linear functionals on Euclidean space, we have proved the following

Theorem 1′. A preference relation � on QL(H) is nice if and only if there exist a

utility function u : X → R and a belief operator B such that � is represented by the function

σ 7→ Tr (Shu (σ)B) .

Moreover, if the preference � is non trivial (that is there exist Q-lotteries σ and τ such

that σ ≺ τ) then B is unique and u is unique up to a positive affine transformation.

Remark. In quantum physics such belief operators are called ‘states’ or ‘density op-

erators’. We shall refer to them as ‘belief-state’ or ‘cognitive state’ because they allow

constructing subjective probabilities in a most suitable way. Indeed, let B be a belief opera-

tor; then, for any event P , βB(P ) = Tr(PB) is the subjective probability for event P when

the cognitive state is B.

Example 1. Assume that belief operator B is given as the projector P = Pe on a

one-dimensional subspace Ce ⊂ H, generated by a vector e of length 1 (that is (e, e) = 1; in

Physics such operators are called pure states). In other words, P (x) = (x, e)e. It is easy to

check that, for any Hermitian operator A (viewed as a Q-lottery), its utility U(A) is equal to

Tr(AP ) = (Ae, e). The quadratic form (Ae, e) gives the utility of lottery A when the belief

is represented by a pure state e. The value of the lottery is the expected utility when all but

elementary event e have zero subjective probability.

Such a belief corresponds to a maximally precise (subjective) representation of the mea-

sured system. In the quantum context, a maximal information state does not correspond

to complete information as in the classical context. In a maximal information state a mea-

surement (incompatible with a one that has the current pure state as a possible outcome)

generates new information and leads to the loss of some other previously known information:

the state changes.

Example 2. Let us now consider the polar case, when our DM has a belief represented

by the operator B = E/ dimH which can be interpreted as ‘uniform uncertainty ’ i.e., the

DM assigns equal probability to all states. The expected value of a lottery A under such a

belief is U(A) = Tr(AE)/ dim(H) = Tr(A)/ dim(H) which corresponds to the arithmetic

average of the eigenvalues of operator A.
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Note that as in the standard setting whatever the belief B, the expected value of a

lottery-operator A equals to some convex combination of its eigenvalues.

4 Updating

Suppose that the belief of our decision-maker is given by belief operator B. That is, she

believes that the state of the measured quantum system is B. Alternatively, her cognitive

state is such that she assigns probabilities to events according to B. This means the following.

We here consider events as subspaces of H, or as projectors. If P is a projector then the

probability of P (with belief B) is equal to Tr(PB). Since P is a projector, we can write

prob(P ) = Tr(PBP ) a formulation that we use extensively below. In the next section, we

return to the interpretation of B. But for now suppose that she receives information of

relevance for the lotteries. This information may concern the prizes or be relative to the

system, the measurement of which determines the outcomes and the prizes. In the following,

we restrict ourselves to the case when the value of the prizes does not change (and is given

by a fixed utility function u) and all new information concerns the measured system. For

instance, the DM (or someone else) performs some intermediate measurement and learns

as a result of the measurement that some event P occurred. It is almost obvious that her

belief and preferences on Q-lotteries should change, the question we ask in this section is

how should her preferences on quantum lotteries change after receiving that information?

In Quantum Mechanics, it is simply postulated that the state (of a measured system)

changes in accordance with the von Neumann-Lüders postulate. More precisely, a system

that was in state B transits to the state B′ = PBP/Tr(PBP ) as a result of performing

a measurement that yields event P . The operator PBP is Hermitian and non-negative

((PBPv, v) = (BPv, Pv) ≥ 0 by force of the nonnegativity of B). Thus, B′ is indeed a

state. Here, we need to clarify why Tr(PBP ) is different from zero so we are allowed to

divide by this number. We understand Tr(PBP ) as the probability to discover event P in

cognitive state B. Thus, by analogy with standard Bayesian updating, the von Neumann-

Lüders postulate focuses on cases where the state assigns a positive probability to event P .

If the trace Tr(PBP ) were equal to 0, that would mean that something happened which

had zero probability, i.e. an event that is considered impossible under belief B. That is, the
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belief of our DM captured by the state B is simply incorrect and she has to update it in a

more fundamental way.

We want to show that in quantum decision theory beliefs change in the same way. Clearly,

we have to make some assumptions. In order to determine which assumptions we need, we

return for a minute to the behavior of a classical decision-maker. She has preference over

functions (acts) defined on the set S of states of nature; suppose that she learns in addition

that the true state lies in some subset T ⊆ S. It is quite natural to assume that her new

preference depends only on values of these functions on the subset T . That is, only on the

restriction of the various functions to T .

I. Information as events

We want to proceed with Q-lotteries in a way analogous to the classical case. We shall

assume that the new information comes from the performance of a projective measurement

and that the obtained result informs that event P has occurred. Here P is a projector on

subspace W . We have to define what we mean with the “restriction of a Q-lottery” to a

subspace W .

As a subspace of the Hilbert space H, W is also a Hilbert space. Given an Hermitian

operator A on H, one can consider the operator PA as an operator on W (v 7→ PA(v) for

v ∈ W ). To avoid confusion, we denote operator PA, constructed as an operator on W , by

A|W and call it the restriction of A on W . First we note that A|W is an Hermitian operator

(as an operator on W , not on H). Indeed, if y, z ∈ W (and hence Py = y, Pz = z) then

(PAy, z) = (Ay, Pz) = (Ay, z) = (y, Az) = (Py,Az) = (y, PAz).

The same argument shows that A|W is a nonnegative operator on W provided A is nonneg-

ative. Note, finally, that P |W is the identity operator on W .

The above indicates how to define a restriction to subspace W of any Q-lottery. If

σ =
∑

i xi ⊗ Pi is a Q-lottery on H, then σ|W :=
∑

i xi ⊗ Pi|W is a Q-lottery on W . We

call σ|W the restriction of lottery σ to W . Clearly, Sh(σ|W ) = Sh(σ)|W .

Let us next turn to the problem of updating nice preferences. Suppose that � is a nice

preference relation on the set QL(H); due to Theorem 1′ it is given by some belief operator
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B. Suppose now that our DM receives information in the form of an event-subspace W ⊂ H

(or of an event-projector P ). The updated preference relation is denoted by �W . Following

Ghirardato (2002), we formulate two axioms connecting �W and �. The first one, A5, is

’consequentialism’:

A5 If σ and τ are Q-lotteries on H, and σ|W = τ |W , then σ and τ are equivalent with

respect to �W .

To formulate the second axiom we need one more notion. We say that a projector P

is compatible with a Q-lottery σ =
∑

i xi ⊗ Pi if P commutes with every Pi. Now we can

formulate axiom A6 of compatible dynamic consistency:

A6 Suppose that lotteries σ and τ are compatible with P , and σ|W⊥ = τ |W⊥, then

σ �W τ if and only if σ � τ .

Extending Ghirardato (2002) to the quantum context, we state the following

Theorem 2. Let � be a non-trivial nice preference given by a belief operator B, and

Tr(PBP ) > 0. Then

a) The preference relation �W given by the belief operator Bup = PBP/Tr(PBP ) sat-

isfies axioms A5 and A6.

b) Conversely, if a preference relation �W satisfies Axioms A1, A5 and A6, then it is

nice and it is given by the ‘updated’ belief operator Bup = PBP/Tr(PBP ).

The proof of Theorem 2 is in Appendix 3. It generalizes the classical equivalence result

between Dynamic Consistency and Consequentialism on the one hand and Bayesian updating

on the other hand to our nonclassical setting. Its proof is similar to the classical one. Given

two classical Q-lotteries σ, τ ∈ QL(H), we construct two other Q-lotteries adW (σ), adW (τ) ∈

QLc(H) with the following properties:

(1) adW (σ)|W = σ|W and adW (τ)|W = τ |W ,

(2) adW (σ)|W⊥ = adW (τ)|W⊥.

That is, adW (σ) and adW (τ) agree on W with σ and τ respectively, while they agree with

each other on W⊥. Given Axioms A5 and A6, these two properties imply the equivalence

between σ �W τ and adW (σ) � adW (τ) for any Q-lotteries σ and τ . In a classical setting,

this equivalence is essentially a form of Savage’s (1954) Sure Thing Principle. Actually,

17



Savage postulates a preference satisfying the Sure Thing Principle and defines conditional

preference through this equivalence. Moreover, we show that we can choose adW (σ) and

adW (τ) such that their shadow operators are respectively given by PSh(σ)P and PSh(τ)P .

In classical terms, this means that the ‘utility profiles’ induced by adW (σ) and adW (τ) are

equal to those of σ and τ on event W and equal to 0 otherwise. From there, it takes a little

algebra and the uniqueness part of Theorem 1’ to conclude. We next discuss some corollaries

of this theorem.

Remark 1. We above assumed that the probability of the event P is non-zero. In the

opposite case the received information contradicts the initial belief. Consider now the case

when the probability of the event P (equal, as we know, to Tr(PBP )) is 1, that is our

DM is sure that event P must occur. Receiving information that P occurred she does not

learn anything and intuitively we expect her preferences to remain the same, which indeed

obtains:

Proposition 1. The distance between a prior B and the posterior Bup is O((1 −

Tr(PBP ))1/4).

In particular, if Tr(PBP ) = 1 then Bup = B. We prove Proposition 1 in Appendix 4.

Remark 2. Let us consider a situation when the initial (a priori) belief is maximally

precise, that is, it is given (as in Example 1) by a one-dimensional projector or, to put

it differently, B is a pure state. How does the DM update her belief as she receives new

information? We expect the updated state to be pure as well. This is true in the classical

context and this is true in the quantum case as well with a noticeable distinction that the

new pure state is generally not the same as the initial one.

Proposition 2. If a belief operator B is a one-dimensional projector then the updated

operator Bup is a one-dimensional projector as well.

Proof. The rank of operator PBP is less or equal to the rank of operator B, that is ≤ 1.

2

The main difference with the classical situation is that the new state is generally different

from the initial one. Indeed, let our belief operator B be the projection on the line Ce, where

e is a normalized vector ((e, e) = 1). Such a projector B moves an arbitrary vector x to vector
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(x, e)e. Then the operator PBP moves vector x to P ((Px, e)e) = (Px, e)P (e) = (x, Pe)Pe,

that is the projection (up to the multiplier (Pe, Pe)) on the line CPe. Thus, the pure

state e is changed into another pure state Pe/
√

(Pe, Pe). The reader can see here the

projection postulate at work. We would like to add that the modification is smaller the

closer the vector e to the subspace W associated with the projector P . That is the closer

Tr(PBP ) = (Pe, Pe) to 1.

Remark 3. Suppose that, after receiving information in the form of an event-projector P,

the DM receives yet some new piece of information in the form of an event-projector Q (which

does not contradict P ). Then (up to a factor) the state changes as B 7→ PBP 7→ QPBPQ.

However, in the case when events-projectors do not commute with each other, the updated

belief depends on the order in which the updating is realized. Manipulating the order in

which information is provided affects our DM preferences and thus her choice behavior.

As we shall see later, together with Remark 2, Remark 3 paves the ground for interesting

economic implications.

Remark 4. Above we assume that the information comes in the form of an event, that

is a subspace W or a projector P . However we could consider the more general case when

the information has the form a ‘fuzzy-projector’, that is an Hermitian operator P such that

0 ≤ P ≤ E. In this case the updated belief takes the form Bup =
√
PB
√
P/Tr(PB).

Proposition 1 generalizes to this setting; see Appendix 4.

II. Information as measurements

In the remaining of the paper we use the ‘shadow operator’ expression for lotteries:

A = Shu(σ). Due to Theorem 1′, the utility of such a lottery under belief B is equal to

U (A) = Tr(AB).

Usually, new information arises as the outcome of some measurement. Suppose we per-

form some von Neumann measurement, represented by an orthogonal decomposition of unit

(ODU) (Pi, i ∈ I). If, as the result of this measurement, we obtain outcome i, the belief-

state B changes (is updated) into Bi = PiBPi/Tr(PiB). We say that the state of the

system transits into subspace W = Im(Pi). Note that the number pi = Tr(PiB) is precisely

the probability (under the belief B) for the realization of outcome i when performing our
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measurement. Excluding impossible results, we can assume that these numbers are strictly

positive.

The utility of ‘lottery’ A, after the DM received information about the realization of

outcome i, is now equal to Ui (A) = Tr(ABi). It may clearly be either larger or smaller than

the initial U(A).

Further we discuss an interesting case when such a measurement has been performed

(using ODU P = (Pi, i ∈ I)), but its outcome is not known to the DM, i.e., she only knows

that the measurement took place. This is a new type of information; in Physics one speaks

about ‘decoherence’. It is a fully non-classical phenomenon, because in the classical situation

such an ‘information’ is useless. This is not the case in a quantum context.

We earlier established that when learning about the occurrence of an outcome i, the

utility of the lottery-operator A is updated to Ui(A) = Tr(ABi) (where B is the belief of

our DM, and Bi = PiBPi/Tr(PiB)) that is equal to Tr(APiBPi)/pi. Since the probability

of outcome i is pi, then the expected utility of our lottery U ′(A) (when learning about the

performance of measurement P) is

U ′(A) =
∑
i

piUi(A) =
∑
i

Tr(APiBPi).

(Of course, this means also that the state of belief B has changed into a new state B′ =∑
i PiBPi). And, as we shall see, the connection between these two utilities, i.e. ex-ante

U(A) and ex-post U ′(A), is not straightforward in general. Ex-post utility can be either

larger or smaller than the initial (a priori) utility as the following simple example shows.

Example 3. Let H be a two dimensional Hilbert space with orthonormal basis (e1, e2).

LetA be a projector on e1, i.e., an operator of the form A =

1 0

0 0

 . ConsiderA, a lottery that

gives a utility equal to 1 in state e1 and 0 otherwise. Consider another lottery C =

0 0

0 1


that gives utility 1 in state e2 and 0 otherwise. Assume now that our DM’s belief-state is

given by B = A. Clearly the expected utility of lottery A is equal to 1 and the expected

utility of C is equal to zero. So our DM strictly prefers A to C.

Assume now that we perform a measurement defined by the ODU (P1, P2), where P1 =
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1/2 1/2

1/2 1/2

 and P2 =

 1/2 −1/2

−1/2 1/2

 . If the outcome of the measurement is 1, the updated

belief-state is given by operator B1 = P1BP1/Tr (P1BP1) , which as can be seen easily is

equal to P1. The expected utility in the belief-state is U1 (A) = Tr(AB1) = Tr(AP1) = 1/2.

And similarly if we obtain (the complementary) outcome 2, the belief-state is updated to

B2 = P2BP2/Tr(P2BP2) and the corresponding expected utility is U2 (A) = Tr(AB2) =

Tr(AP2) = 1/2. So we see that for any one of the two possible outcomes the value of the A

lottery goes from 1 to 1/2. With the same reasoning we obtain that U1 (B) = Tr(CB1) =

Tr(CP1) = 1/2 = U1 (C) . So the two lotteries A and C yield the same expected utility. This

violates “recursive dynamic consistency”: lottery A is ex-post indifferent to C whatever the

outcome of the measurement, yet ex-ante it is strictly preferred. Note that the intermediary

measurement (P1, P2) is incompatible with either A or C and B.

It may seem odd that our dynamic consistency axiom A6 allows for such departures.

But the appeal of recursive dynamic consistency is based upon the implicit assumption that

“the act the agent performs has no effect on the resolution of uncertainty” [13]. However,

the resolution of uncertainty is - in our setting - affected by the act that is selected and

the measurements it entails (as well as by other measurements) performed to acquire new

information. Once this is taken into account, recursive dynamic consistency loses much of

its appeal. In the next section we discuss an economic example of the phenomenon exhibited

above in connection with the behavior documented in the “Economics of Manipulation and

Deception” [2].

Example 3 also allows illustrating ‘information as measurements’ a feature that lacks

counter-part in the classical model. Imagine that we perform the measurement described

above but our DM is not informed of the result. She only knows the measurement has been

made. In the classical world such an information does not affect the DM’s belief or the

expected value of the lotteries. However in the quantum context the DM understands that

for any of the two outcome (1 or 2) the expected value of lottery A has changed from 1 to 1/2.

Therefore, independently of her (lack of) knowledge about the outcome of the measurement,

she will revise her belief-state. The new belief-state is B′ = p1B1 + p2B2 = E/2 which

corresponds to ‘uniform ignorance’. And in this belief-state the expected utility of lottery A

is equal to Tr(AB′) = Tr(AE)/2 = 1/2. 2
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There are two interesting cases when decoherence (that is a measurement with unknown

outcome) does not change the utility of a lottery or the state of belief. These are cases when

the measurement P is compatible either with the lottery A or with the belief B, i.e. when

all the projectors Pi, i ∈ I, commute either with operator A or with operator B.

Proposition 3. Assume that the intermediate measurement is compatible with either

operator A or B. Then U(A) = U ′(A).

Proof. U ′(A) =
∑

i Tr(APiBPi) =
∑

i Tr(PiAPiB). Suppose that PiA = APi. Then the

second sum can be rewritten as

∑
Tr(PiPiAB) =

∑
Tr(PiAB) = Tr((

∑
Pi)AB) = Tr(AB) = U(A).

Suppose now that PiB = BPi. Then the first sum can be rewritten as

∑
Tr(APiPiB) =

∑
Tr(APiB) = Tr(A(

∑
Pi)B) = Tr(AB) = U(A). �

Remark 5. Decoherence always changes state of belief toward a more dispersed one.

One can give to this statement an exact sense, using notions from [3]. Here we would like to

illustrate this by an example when initial state is pure, presented by a (normalized) vector e.

As we see from the formula above (for updating the belief operator), the updated state is a

probability mixture (with weights pi) of pure states corresponding to the projections of e on

the subspaces Wi. That is a pure (coherent) state disintegrates (decoheres) into a mixture

of pure states.

5 Quantum Cognition in Economics

In this section we discuss the possible value of our results for behavioral economics. We start

with a few words about quantum cognition. We know that in order to assess the world we

build a representation of it, a “represented world” which is a mental construct. In classical

standard theory, the represented world reflects our incomplete knowledge about the world

expressed in our belief and this belief (should) evolves according to Bayes’ rule in response

to new information. Quantum cognition has been developed under the last decades as an
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alternative approach to incorporate two observations: 1. People have difficulties to build a

representation of a complex object. What people do is to consider a complex object from

different perspectives - one at a time; 2. People may be unable to combine perspectives

i.e., to synthesize all relevant information into one stable representation of the complex

object. Quantum cognition models the incapacity to combine some pieces of information

by analogy with incompatible properties (also called “Bohr complementary”) in Quantum

Mechanics: different properties may be incompatible in the sense that they cannot be given

a determinate value simultaneously (cf speed and position) but they complement each other

in the description of the system. Similarly different perspectives on an alternative may be

incompatible in the mind in the sense that the individual cannot have a clear stand with

respect to them simultaneously (i.e., combine them in a single coherent stable picture) but

the different perspectives contribute in characterizing the alternative.

In the present paper, we have extended decision theory to a non-classical uncertainty

environment. An interpretation of this move corresponds to proposing that the “represented

world” used to evaluate lotteries exhibits quantum-like properties. The above mentioned

cognitive limitations are then viewed as an expression of the quantum indeterminacy of be-

liefs. Our results with respect to dynamic consistency shed new light on observed behavioral

anomalies in the spirit of Shiller (2000) and Akerlof and Shiller (2015) who write : “In our

thoughts, as in our conversation, our minds may change. It is not just that we acquire new

“information”; we change our point of view and we interpret information in a new way. Im-

portantly these evolutions of our thoughts mean that our opinions, and the decisions that are

based on them, may be quite inconsistent”(p.45). We next provide an example showing how

the quantum indeterminacy of beliefs and in particular its dynamic properties illustrated in

Example 3 above delivers the kind of manipulability at the core of Phishing for Phools ( [2]).

Consider a seller who wants to sell a smartphone at price 300$ and a customer considering

buying one. Initially, the customer holds a belief about the quality of the smartphone that

can be either Excellent (utility 600) or Standard (utility 100). Her initial cognitive state

assigns subjective probabilities 0.25 and 0.75 respectively to the two possible events so the

expected utility is EU(S) = .25 · 600 + .75 · 100 = 225. The alternative is to keep the money

which has utility 300. So initially the customer does not want to buy the new smartphone

since 225 < 300. Now the seller engages in a conversation about the use of this brand
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of smartphone among famous people. In so doing the customer is moved from a private

user perspective on the smartphone to a “glamour” perspective (also with two outcomes:

glamour, not glamour). Assume that the two perspectives are incompatible in the mind.

Now what matters to our consumer is her idol Beyoncé, so she asks whether Beyoncé uses

that smartphone. The seller answers truthfully either yes or no. After the conversation

the consumer updates her belief, her cognitive state is modified. Consider for simplicity the

case when private user and glamour perspectives are totally uncorrelated (the corresponding

bases are 45◦ rotations of each other - see the figure below). As she turns back to the

question whether or not to buy the smartphone, the lottery with the updated belief yields

expected utility EU(S) = .5 · 600 + .5 · 100 = 400 > 300 whether she learned that the

smartphone is glamour or not (and her cognitive state is projected onto the corresponding

axis):“the phool has been phished!”: the seller has exploited the quantum indeterminacy

of the consumer’s “represented smartphone” (that is her belief and her consistent updating

rule when evaluating the lottery) to change her preferences so she chooses to purchase the

smartphone. Quoting Akerlof and Shiller again “Just change people focus and you can

change the decisions they make” ( [2], p. 173).
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In this example, we have assumed that the user and glamour perspectives are incom-

patible in the mind of Receiver. An interpretation is that they appeal to arguments and

emotions that cannot be processed simultaneously while still being related as aspects of the

smartphone. The user perspective appeals to concrete functionalities of immediate practi-

cal significance for her. The glamour perspective appeal to her social persona, the pride

and pleasure to be associated with a highly popular singer. The specific correlation (45◦)

can be interpreted as follows: when in the “glamour” perspective, she is (possibly uncon-
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sciously) reminded of the general disconnect between what is temporarily “fashionable” and

fundamental user values of commodities.

6 Concluding remarks

In this paper we provided a consistent choice theory that accounts for cognitive limitations

affecting our capacity to build representations of choice alternatives. We found that the

mathematical formalism of quantum mechanics offers a suitable framework for modeling

such cognitive limitations. We characterize the rules for consistent choice behavior in a

non-classical uncertainty environment. A concept of quantum lottery is introduced and

sufficient and necessary conditions for choice behavior to be representable by an expected

utility function are formulated. We next derive, from behavioral principles, an updating rule

that secures the dynamic consistency of her preference relation as the decision-maker learns

new information.

We found that most of the classical axioms of decision theory carry over to the context of

quantum lotteries. This is because all but one axiom can be formulated in terms of a single

orthogonal decomposition of the state space. Quantum lotteries operating in the Hilbert

space are then equivalent to roulette lotteries in a classical state space. An additional axiom

is required to secure that the probability for any specific event does not depend on the

particular lottery that it belongs to. The necessity to impose that axiom stems from the

fact that while it is trivially true in the classical world, it is not necessarily so in our general

setting.

A most interesting result is that the von Neumann-Lüders postulate which is central to

Quantum Mechanics and informs about the impact of a measurement on the state of a system

can be derived from a consistency requirement on choice behavior. When the belief-state

(cognitive state) is updated according to the postulate, the agent conditional preferences

reflect a single preference order. Of particular interest for behavioral economics is that in

contrast with classical subjective expected utility theory, dynamic consistency of preferences

does not entail the so-called recursive dynamic consistency. This is an expression of the

fundamental distinction between the two settings namely that the resolution of uncertainty

depends on the operation(s) performed to resolve it. We suggest in an example that this
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very feature allows for interesting applications in behavioral economics in particular related

to the manipulability of agents.
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Appendix 1. Elementary facts about Hilbert spaces

Hilbert space

Let R and C denote the fields of real and of complex numbers. For a complex number z,

z̄ denotes its complex conjugate.

Definition 1. Let H be a vector space over the field C. An Hermitian form on H is a

mapping (., .) : H×H → C such that: a) it is linear in the first argument; b) (v, w) = (w, v)

for any v, w ∈ H (in particular, (v, v) is a real number); c) (v, v) ≥ 0 for any v ∈ H, and

(v, v) = 0 only for v = 0.

Vectors v and w are called orthogonal if (v, w) = 0; in this case (w, v) = 0 as well.

A Hilbert space is a vector space H endowed with an Hermitian form, which is complete

relatively to the norm |v| =
√

(v, v). In order to avoid unnecessary difficulties and subtleties

we assume further that H has finite dimension; then H automatically is complete.

When discussing lotteries and measurements we shall not be dealing so much with vectors

in H as with special operators (linear mappings from H to H) called Hermitian operators.

Hermitian operators

Definition 2. A linear operator A : H → H is called Hermitian, if (Av,w) = (v, Aw)

for any v, w ∈ H.

Clearly (Av, v) is a real number for any v ∈ H. Hermitian operator A is called nonnegative

if (Av, v) ≥ 0 for any v. For Hermitian operators A and B we write A ≥ B if A − B is

nonnegative. The identity operator E (Ev = v for every v ∈ H) is Hermitian.

A most important, for the purpose of this paper, class of Hermitian operator consists

of projectors. A projector is an idempotent Hermitian operator, that is PP = P . Since

(Pv, v) = (PPv, v) = (Pv, Pv) ≥ 0, any projector is nonnegative. Each projector P define

a vector subspace V = ImP ⊂ H, consisting of vectors v such that with Pv = v. The kernel

of the projector consists of vectors orthogonal to V , KerP = V ⊥. The set of projectors can

be identified with the set of (closed) subspaces of H.

Any linear combination of Hermitian operators with real coefficients is an Hermitian

operator. In other words, the set Herm(H) of Hermitian operators is a real vector space.

The crucial importance of projectors is underlined by the following central theorem.
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Spectral theorem. Let A be an Hermitian operator. Then there exists a family of

projectors Pi and real numbers ai such that: 1) PiPj = 0 for i 6= j, 2)
∑

i Pi = E, and 3)

A =
∑

i aiPi.

In other words, in some orthogonal basis the operator A can be represented by a diagonal

matrix (with real coefficients). The coefficients ai are eigenvalues of the operator A. The set

of numbers ai is called the spectrum of the operator A. Clearly A is nonnegative if and only

if all coefficients ai are nonnegative. An operator A is a projector if and only if its spectrum

SpecA consists of 0 or 1.

Each nonnegative operator A has a (unique) nonnegative square root
√
A (or A1/2, such

that (
√
A)2 = A). If A =

∑
i aiPi is a spectral representation of A then

√
A =

∑
i

√
aiPi.

Trace of operators

For arbitrary (not necessarily Hermitian) linear operator A : H → H it is possible to

talk about its trace Tr (A). More precisely, for any quadratic matrix A = (aij), the trace

Tr(A) is defined as
∑

i aii, the sum of its diagonal elements. A remarkable property of the

trace is its ‘commutativity’: Tr(AB) = Tr(BA) for any quadratic matrix A and B. This in

particular implies that the trace of an operator is independent of the choice of basis, thereby

allowing for an unambiguous definition of the trace of a linear operator.

For example, Tr(E) = dimH. More generally, if P is an (orthogonal) projector (on

subspace V = ImP ) then Tr(P ) = dimV . Due to the spectral theorem, we obtain that the

trace of Hermitian operator A =
∑
aiPi is equal to

∑
airk(Pi) and, in particular, it is a

real number. The trace of nonnegative operator A is nonnegative and is strictly positive if

A 6= 0.

For two Hermitian operators A and B define (A,B)Herm = Tr(AB). We assert that this

‘scalar product’ gives a structure of Euclidean space on the real vector space Herm(H).

This follows from the Lemma below.

Lemma. a) (A,B)Herm is a real number ;

b) (A,B)Herm = (B,A)Herm;

c) (A,A)Herm ≥ 0 and is equal to 0 only if A = 0.

Proof. Due to the ‘commutativity’ of the trace, 2Tr(AB) = Tr(AB) + Tr(BA) =

Tr(AB +BA). It is easy to understand that the operator AB +BA is Hermitian, hence its
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trace is real. This proves a).

b) follows from the ‘commutativity’ of the trace.

c) follows from the nonnegativity of the operator A2. 2

Appendix 2. Proof of Theorem 1

Let � be a nice preference relation on the set QL(H). We shall be working with roulette-

valued Q-lotteries, that is with expressions of the form
∑

i li ⊗ Pi, where (Pi, i ∈ I) is a

PDU, and (li, i ∈ I) is a collection of roulette lotteries on X. Let QLP(H,∆(X)) denote the

set of all roulette valued Q-lotteries with base P . We first provide a result that shows that

mixtures of canonical Q-lotteries in QL(H) and mixtures of Q-lotteries in QLP(H,∆(X))

are compatible in a sense we make clear below.

Consider a lottery in the canonical form σ =
∑

x x⊗Px, where x ∈ X,Px are nonnegative

Hermitian operators which add up to E,
∑

x Px = E. The mixture ασ + (1− α) τ, where

τ =
∑

x x ⊗ Qx and α ∈ [0, 1], is given as
∑

x x ⊗ (αPx + (1− α)Qx) . On the other hand

a roulette valued Q-lottery writes σ =
∑

i li ⊗ Pi, where P = (Pi, i ∈ I) is a measurement

device (the base of the lottery) and li ∈ ∆ (X) . A mixture of such lotteries is defined by the

following formula: ασ+ (1−α)τ =
∑

i (αli + (1− α) ri)Pi, where τ =
∑

i ri⊗Pi is another

Q-lottery in QLP(H,∆(X)) and α ∈ [0, 1].

We next define the canonization mapping can : QLP → QLc, which maps lottery
∑

i li⊗

Pi (where the roulette lottery li has the form
∑

x x⊗li (x) i.e., li gives value x with probability

li (x)) into the canonical lottery
∑

x x⊗ (
∑

i li (x)Pi) .

Lemma 2. The mapping ‘can’ preserves the operation of mixture; that is, for any

σ, τ ∈ QLP(H,∆(X)) and α ∈ [0, 1], can(ασ + (1− α) τ) = αcan (σ) + (1− α) can (τ).

Proof. Assume we have two P−based lotteries σ =
∑

i li ⊗ Pi and τ =
∑

i ri ⊗ Pi and

some α ∈ [0, 1] . We want to show that can(ασ + (1− α) τ) = αcan (σ) + (1− α) can (τ) .

The left hand side is equal to can (
∑

i (αli + (1− α) ri)⊗ Pi) =∑
x x⊗

∑
i (αli + (1− α) ri) (x)Pi =

∑
x x⊗

∑
i (αli (x) + (1− α) ri (x))Pi =

=
∑

x x⊗
∑

i (α
∑

i li (x) + (1− α)
∑

i ri (x))Pi.

The right hand side is α
∑

x x⊗ (
∑

i li (x)Pi) + (1− α) (
∑

x x⊗
∑

i ri (x)Pi)

= αcan (σ) + (1− α) can (τ). 2
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Returning to the proof of Theorem 1, let �∆ denote the derived preference relation on

the set ∆(X) of roulette lotteries. The assertion of the theorem is true if the preference � is

trivial. Indeed, we can take u to be a constant and take an arbitrary functional β. So, from

now on, we assume that the preference � is nontrivial. That is τ ≺ σ for some Q-lotteries

σ =
∑

i li ⊗ Pi and τ =
∑

jmj ⊗Qj.

Claim 0. Let l∗ be the best lottery among (li) and m∗be the worst among (mj) with

respect to the derived weak order �∆. Then σ � l∗ ⊗ E and m∗ ⊗ E � τ.

Proof. Consider the ‘constant’ lottery σ∗ =
∑

i l
∗ ⊗ Pi. Due to A4, σ � σ∗, due to A0,

σ∗ ≈ l∗ ⊗ E and due to the transitivity of � (see A1), we conclude that σ � l∗ ⊗ E. The

proof m∗ ⊗ E � τ is analoguous. 2

From Claim 0 it follows that the derived preference �∆ is non-trivial, that is l∗ ≺∆ l∗ for

some ordinary lotteries l∗ and l∗. We fix such lotteries l∗ ≺∆ l∗; a function u : ∆(X)→ R is

said to be normalized if u(l∗) = 0 and u(l∗) = 1.

Fix now some measurement device P = (Pi, i ∈ I), and let QLP(H,∆(X)) denote

the set of all roulette valued Q-lotteries with base P . We first extend � into a preference

relation �P defined on QLP(H,∆(X)) by setting σ � τ if and only if can(σ) � can(τ) for

any σ, τ ∈ QLP(H,∆(X)).

Claim 1. There exists a normalized affine function uP on ∆(X) and a function βP

on the set of outcomes I (βP(i) ≥ 0 and
∑

i βP(i) = 1) such that the preference �P is

represented by the function UP , UP(
∑

i li⊗Pi) =
∑

i uP(li)βP(i). Moreover, both uP and βP

are unique.

Proof. Each Q-lottery σ =
∑

i li⊗Pi can be considered as a ‘horse’ lottery f : I → ∆(X),

where f(i) = li. Moreover, due to axioms A1-A4 and Lemma 2, the relation �P satisfies all

the Anscombe-Aumann axioms. Therefore, by theorem 13.2 in Fishburn (1970), we obtain

an affine utility function uP on ∆(X) and a probability measure βP ∈ ∆(I) that achieve the

representation stated in Claim 1. The uniqueness of βP is also given by this theorem. The

uniqueness of uP follows from normalization of uP . 2

Claim 2. The functions uP are independent of P (and we denote them as u).

Proof. Due to A0, each of the functions uP represents the derived preference �∆ on
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∆(X). Therefore they are positive affine transformations of each other. Normalization gives

that they are in fact equal to each other. 2

Claim 3. For any Q-lottery σ, there exists an ordinary lottery l ∈ ∆(X) such that σ is

equivalent to l, that is σ ≈ l ⊗ E.

Proof. Let σ =
∑

i li ⊗ Pi, and let lb ( lw) be a best (a worst) lotteries among (li, i ∈ I).

Due to A4, we have
∑

i l
w ⊗ Pi � σ �

∑
i l
b ⊗ Pi, and all these Q-lotteries have the same

base P = (Pi, i ∈ I). Therefore we can apply Claim 1, which gives inequalities

u(lw) ≤
∑
i

u(li)βP(i) ≤ u(lb).

Hence
∑

i u(li)βP(i) = αu(lw) + (1−α)u(lb) = u(l) for some α ∈ [0, 1], where l = αlw + (1−

α)lb. By Claim 1, we have σ ≈
∑

i l ⊗ Pi ≈ l ⊗ E. 2

Due to Claim 1, the function UP allows comparing Q-lotteries with base P . But we assert

that it allows comparing Q-lotteries with different bases as well.

Claim 4. Let σ =
∑

i li ⊗ Pi be a Q-lottery with a base P = (Pi, i ∈ I), and let

τ =
∑

jmj ⊗ Qj be a Q-lottery with a base Q = (Qj, j ∈ J). Then σ � τ if and only if

UP(σ) ≤ UQ(τ).

Proof. Due to Claim 3, lottery σ is equivalent to some lottery l ⊗ E, or to the lottery∑
i l ⊗ Pi. Therefore, UP(σ) = UP(

∑
i l ⊗ Pi) = u(l). Similarly, τ is equivalent to m ⊗ E,

and UQ(τ) = u(m). Now

σ � τ ⇔ l ⊗ E � m⊗ E ⇔ UP(σ) = u(l) ≤ u(m) = UQ(τ). 2

Let us return now to the functions βP . We assert that βP(i) depends only on the operator

Pi, not of P and i.

Claim 5. Let P = (P1, ..., Pn) and Q = (Q1, ...Qk) be two measurement devices (bases),

and P1 = Q1 = R. Then βP(1) = βQ(1).

Proof. Consider Q-lottery σ = l∗ ⊗ P1 +
∑n

i=2 l∗ ⊗ Pi with base P . Its P-utility UP(σ)

is equal to βP(1). Now let us form the auxiliary base R = (R,E − R) and the following

Q-lottery ρ = l∗ ⊗ R + l∗(E − R). Since E − R = P2 + ... + Pn, the lottery ρ is equivalent
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to σ (see Axiom A0). Therefore R-utility UR(ρ) (which equals βR(1)) is, by Claim 4, equal

to βP(1). The same applies to Q and gives the equality βR(1) = βQ(1). Together with the

equality βR(1) = βP(1) we obtain the equality βP(1) = βQ(1). 2

As a consequence, we can speak about the number β(P ) for any ‘event’ P , that is for

any Hermitian operator P , 0 ≤ P ≤ E. β(P ) is R-utility UR of the following Q-lottery

l∗ ⊗ P + l∗ ⊗ (E − P ). Correspondingly, the utility of an arbitrary Q-lottery σ =
∑

i li ⊗ Pi
can be rewritten as

U(σ) =
∑
i

u(li)β(Pi).

Obviously, β(0) = 0 and β(E) = 1. Moreover, β(P ) ≥ 0 for any ‘event’ P , and∑
i β(Pi) = 1 provided

∑
i Pi = E.

Claim 6. If 0 ≤ P , 0 ≤ Q, and P +Q ≤ E, then β(P +Q) = β(P ) + β(Q).

Proof. Indeed, consider the Q-lottery l∗ ⊗ P + l∗ ⊗ Q + l∗ ⊗ (E − P − Q). Its utility

is β(P ) + β(Q). On the other hand, due to A0, this lottery is equivalent to the lottery

l∗ ⊗ (P +Q) + l∗ ⊗ (E − P −Q), whose utility is β(P +Q). 2

Claim 6 implies that β can be extended to a (unique) linear functional β on the vector

space Herm(H). Obviously, β(A) ≥ 0 for A ≥ 0, and β(E) = 1. That is β is a belief

functional. This completes the proof of Theorem 1.

Appendix 3. Proof of Theorem 2

Proof of Assertion a). Here we can work with lotteries in the form of Hermitian operators.

The utility U(A) of such an operator A is equal to Tr(AB) and the utility under the condition

P is equal to U(A|P ) = Tr(APBP ) (up to the factor Tr(PBP )).

Proof of property A5. We assume that A|W = 0 and we have to show that U(A|P ) = 0.

Note that A|P = 0 is equivalent to PAP = 0. Now U(A|P ) = Tr(APBP ) = Tr(PAPB) =

Tr(0B) = 0.

Proof of property A6. Here we assume that A commute with P and that (E − P )A = 0

(that is A = PA = AP ). We have to show that U(A|P ) is equal to U(A). But U(A|P ) =

Tr(APBP ) = Tr(PAPB) = Tr(AB) = U(A), because PAP = A.
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Proof of Assertion b). We define (for an arbitrary Q-lottery σ =
∑

i xi⊗Pi and an event

W given by a projector P ) some special (adapted to P ) Q-lottery that we denote adW (σ).

Roughly speaking, adW (σ) =
∑

i xi ⊗ PPiP . However, the sum
∑

i PPiP is equal to P , not

to E. Therefore we add to this sum a tail-end x∗ ⊗ (E − P ). Here x∗ is a prize with zero

utility. The final formula yields

adW (σ) =
∑
i

xi ⊗ PPiP + x∗ ⊗ (E − P ).

Lemma 3. a) σ|W = adW (σ)|W ;

b) the adapted lottery adW (σ) is compatible with P ;

c) for any Q-lottery σ we have adW (σ)|W⊥ = x∗ ⊗ (E − P ).

Proof . a) It is obvious that Pi|W = PPiP |W . Moreover, (E − P )|W = P (E − P ) = 0.

b) For any i we have PPPiP = PPiPP , since PP = P . Moreover, P (E − P ) =

(E − P )P = 0.

c) It is clear that (E − P )PPiP = 0 for any i. 2

Proposition 4. Suppose that a preference relation �W on the set QL(H) is a weak

order and satisfies the axioms A5 and A6. Then it is given by the following explicit formula

(where σ and τ are Q-lotteries on H):

σ �W τ if and only if adW (σ) � adW (τ). (1)

Proof. Indeed, due to the axiom A5 and Lemma 3, we have σ ≈W adW (σ) and τ ≈W
adW (τ). Applying axiom A6 to the lotteries adW (σ) and adW (τ) (which is possible due to

points 2) and 3) of Lemma 3), we obtain that adW (σ) � adW (τ) if and only if adW (σ) �W
adW (τ). The rest follows from the transitivity of �W . 2

We recall that the (unconditional) utility of lottery adW (σ) is equal to Tr(Sh(adW (σ))B).

If A = Sh(σ) then Sh(adW (σ)) = PAP + 0(E − P ) = PAP . Therefore U(adW (σ)) =

Tr(PAPB) = Tr(APBP ) = Tr(PBP )Tr(ABup), which is (up to the factor Tr(PBP )) the

utility of σ with respect to ‘updated’ belief operator Bup = PBP/Tr(PBP ). This completes

the proof of Theorem 2.
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Appendix 4. Proof of Proposition 1.

We here prove an assertion that generalizes Proposition 1 when we substitute projector P

with an arbitrary ‘fuzzy-projector’ F , that is an operator 0 ≤ F ≤ E (see Remark 4 of

Section 4). The posterior Bup is given as
√
FB
√
F/Tr(

√
FB
√
F ) =

√
FB
√
F/Tr(FB).

We shall denote it as B|F .

Proposition 1′. The distance between a prior B and the posterior B|F is O((1 −

Tr(FB))1/4).

In other words, if ε = 1−Tr(FB) then the distance between B and B|F is O(ε1/4).

Proof . Choose an orthonormal basis of H in which the operator F (as well as
√
F ) has

diagonal form

F = diag(f1, ..., fn).

In this basis operator B is represented by Hermitian matrix (bij), where i and j run over 1 to

n = dimH. The matrix
√
FB
√
F has coefficients

√
fibij

√
fj. The matrix

√
FB
√
F differs

of B|F =
√
FB
√
F/Tr(FB) by less than O(ε). Thus we need to compare B and

√
FB
√
F

and to show that the distance between them is O(ε1/4). Or equivalently we need to show

that (for any i and j) distance between bij and
√
fibij

√
fj is O(ε1/4) .

Let us divide the set of indices i from {1, ..., n} into two groups. Say that an index i is

non-essential, if bii ≤
√
ε, and is essential in the opposite case.

Lemma 4. If i is non-essential then |bij| ≤ ε1/4.

Proof . A sub-matrix of the matrix B, formed by the rows and columns from the set

{i, j}, is Hermitian and therefore has non-negative determinant biibjj − |bij|2. That is
√
ε ≥

biibij ≥ |bij|2. 2

Due to Lemma 4, if i or j is non-essential then the coefficient bij of the matrix B as well

as the corresponding coefficient bij
√
fi
√
fj of the matrix

√
FB
√
F is ≤ ε1/4. Therefore the

distance between them is ≤ 2ε1/4.

Hence we can suppose that the both indexes i and j are essential.

Lemma 5. If an index i is essential then fi = 1 +O(ε1/2).
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Proof . We have Tr(FB) = 1 − ε, that is
∑

i fibii = 1 − ε. Moreover the trace of B is

equal to 1, that is
∑

i bii = 1. Substracting we obtain that
∑

i bii(1− fi) = ε, therefore each

term of this sum is less or equal to ε, bii(1 − fi) ≤ ε. . In particular, if i is essential then

bii > ε1/2 and 1− fi < ε1/2, that is fi = 1 +O(ε1/2). 2

As a corollary we obtain (for an essential i) that
√
fi = 1 +O(ε1/2).

Let us return to evaluation of the distance between bij and bij
√
fi
√
fj in the case when i

and j are essential indexes. It is clear that bij−bij
√
fi
√
fj = bij(1−(1+O(ε1/2))(1+O(ε1/2))).

The module of this number is no more than |bij| (which is ≤ 1) multiplied by Q(ε1/2).

Therefore the distance is no more than ≤ O(ε1/2) ≤ O(ε1/4) which proves Proposition 1‘. 2
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