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Abstract We prove a coincidence of the class of multi-preference hyper-relations
and the class of decent hyper-relations (DHR), that is the class of binary relations on
opportunity sets satisfying monotonicity, no-dummy, stability with respect to contrac-
tion and extension, and the union property. We study subclasses of DHR. In order to
pursue our analysis, we establish a canonical bijection between DHR and the class of
no-dummy heritage choice functions. From this we obtain that the no-dummy heritage
choice functions have multi-criteria rationalizations with reflexive binary relations. We
also prove that the restriction of this bijection to two subclasses of DHR, namely the
transitive decent hyper-relations, and the ample hyper-relations, is a bijection between
these subclasses and the classes of closed no-dummy choice functions and no-dummy
path-independent choice functions (Plott functions), respectively.

1 Introduction

The ranking of sets of alternatives in terms of the degrees of freedom of choice that
they offer to an agent has been the subject of considerable (axiomatic) analysis in
recent years. The problem faced by a Decision Maker (DM) is to value an opportunity
set in terms of the flexibility that it provides to the agent, when a DM is uncertain about
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her own future preferences at the time it would have to make her choice. Therefore,
the greater the flexibility embodied by the opportunity set, the better it is for the agent.
On the other hand, a DM can choose a subset of an opportunity set, and from this
subset the future choice will be made.

At a first glimpse, these are two different problems: the first conceptualizes the
problem of ranking opportunity sets, while the second ‘reveals’ the freedom-ranking
of the sets of alternatives indirectly; the first one is concerned with the comparison of
pairs of (opportunity) sets (A, B) with no restrictions (on A and B), while the second
one deals with pairs of sets (A, f (A)), such that f (A) ⊆ A.

One of the main aim of the present work is to show that these two tasks become
equivalent under the assumption that a DM is endowed with a ‘binary rationality’.

Specifically, we suppose a DM has a ‘binary rationality’ on the set of alternatives X
whenever a DM can compare any pair of alternatives x, y ∈ X by considering either
one alternative preferred to another (denoted by x < y or y < x) or both as equivalent
(i.e. x < y and y < x), or (further) as incomparable (namely y �< x and x �< y),
where < denotes an irreflexive binary relation on the elements of X . We do not assume
transitivity of <. (For example, a DM of the form of a committee of experts which
compare projects based on the majority rule might produce a non-transitive preference
on the set of projects.) We call an irreflexive binary relation < on X a preference, while
we use the term hyper-relation for indicating a binary relation � defined on the set of
all subsets of X .

A DM endowed with < can naturally compare the opportunity sets according to
the following rule: for opportunity sets A, B ∈ 2X , A hyp(<) B if for any element
a ∈ A, either a ∈ B, or there exists an element b ∈ B such that a < b. We say that
hyp(<) is the hyper-relation generated by <.

The opportunity-sets ordering hyp(<) satisfies the following properties: (i) every
opportunity set is at least as good as every subset of itself (Monotonicity with respect
to set-inclusion); (i i) a set providing more freedom of choice than another will provide
definitely more than just a subset of the latter (Stability with respect to contraction);
(i i i) an opportunity set that contains another opportunity set that provides more free-
dom of choice than a third set will offer certainly more opportunities to choose than the
latter (Stability with respect to extension); (iv) there are not (absolutely) undesirable
opportunities (No-dummy), and (v) if an opportunity set A is at least as good as each
of B and C , then A is at least as good as the union of B and C (Union) (see Sect. 2 for
the formal definitions). Now, we take these axioms as a basis and call a hyper-relation
� satisfying conditions (i) − (v) decent. The class of decent hyper-relations and its
subclasses will be the subject of an extensive analysis in the present work.

On the other hand, a DM, being equipped with the preference <, can choose, from
each opportunity set A, the subset of non-dominated opportunities, namely:

Max(<)(A) := {a ∈ A : � ∃ b ∈ A\ a such that a < b}.

The choice function Max(<) is called rationalized by <, and it satisfies No-dummy
and Heritage properties: (1) the choice of an alternative is the alternative itself (No-
dummy); and (2) if an alternative a is chosen from an opportunity set A, and a is also
an element of a subset B of A, then a must be chosen from B, namely eliminating
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some of the not-chosen alternatives shouldn’t affect the selection of a as the best option
(Heritage property).

This simple example highlights the existence of a connection between the decent
hyper-relations and the no-dummy heritage choice functions. It turns out to be a rule.1

Before formulating this rule as a precise statement, let us consider a DM with state-
dependent preferences. Specifically, the pairwise comparisons of opportunities can
depend on the ‘states of nature’. That is, there is a set S of states of nature (a finite
set for a finite set X ), such that for each s ∈ S and any x, y ∈ X , the comparison
x <s y depends on s. Since a DM has a collection of preferences <s depending on
s ∈ S, a hyper-relation generated by such a collection of preferences is called a multi-
preference hyper-relation. In such a case, a DM ranks B at least as good as A, written
A hyp(<s, s ∈ S) B, if for any a ∈ A, either a ∈ B or, for each s ∈ S, there exists an
element b(s) in B such that a <s b(s).

A multi-preference hyper-relation satisfies the same properties reviewed above.
The corresponding analogue in choice theory is a multi-criteria choice function.

Namely, for a collection of criteria-preferences <s , depending on s ∈ S, the choice
set of a DM from a menu A is the union of non-dominated opportunities within A
with respect to each of the criteria. Such a choice function still satisfies the heritage
property and is no-dummy.

Thus, a DM endowed with a collection of preferences <s , s ∈ S, can order oppor-
tunity sets by considering the intersection of hyper-relations generated by the <s , with
s ∈ S, or a DM can define a choice function that is the union of the choice functions
rationalized by <s , s ∈ S

In the present work, we will show that the two aforementioned approaches
are isomorphic. Indeed, in what follows, we obtain a correspondence from the
set of no-dummy heritage choice functions to the set of multi-preference hyper-
relations. Such a correspondence is a mapping indeed, since it does not depend on
a multi-criteria decomposition of a heritage choice function, and, moreover, is a
bijection.

We prove that the class of multi-preference hyper-relations coincides with the class
of decent hyper-relations (Theorem 1).

We illustrate Theorem 1 by the following example.

Example Let X = {x, y, z} be the universal set of the alternatives. There are six
experts which have the following orderings on the alternatives (1) x > y > z; (2)
z > x > y; (3) y > z > x ; (4) y > x > z; (5) x > z > y; and (6) z > y > x .

There are two states of natures, summer (S) and winter (W). There are two commit-
tee of experts, the summer committee constituted from experts (1)–(4), and the winter
committee constituted from experts (3)–(6). The preferences of the summer and win-
ter committees are defined by the majority rule of the experts of the corresponding
committees. These preferences are depicted below2.

1 It is worth noticing here that the idea to connect hyper-relations and choice functions goes back to Puppe
(1996).
2 Here an arrow x → z means x > z and so on.
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x z
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Specifically, the majority rule of the summer committee <S is presented on the left
hand side picture and that of the winter committee, <W , is on the right hand side.
These preferences are not transitive.

In order to define a decent hyper-relation, one has to set 3 × 8 (n × 2n , n is the
number of alternatives) relations of the form a � A, a ∈ X , A ⊆ X (see Lemma 1).
However, in general a smaller set of relations specifies a decent hyper-relation3. One
can check that a decent hyper-relation � is specified by x � y, y �� x , z � y,
y �� z, z � x , x � z, and y � {x, z} is the intersection of hyp(<S) and hyp(<W ).
This hyper-relation is not transitive. Indeed, as a consequence of the Union property
{x, z} ∼ x (as well {x, z} ∼ z). Then, we have y ∼ {x, z} ∼ x whereas x ≺ y, hence
� is non-transitive. Since x ≺ y and z ≺ y whereas y � {x, z}, we can not find a
single preference which generates �.

The restriction of � to X is a transitive preference and coincides with the preference
being the majority rule of experts (3) and (4):

x z

y

The hyper-relation generated by this preference is transitive and differs from �.
A subclass of transitive decent hyper-relations has been considered by Kreps (1979)

in an intermediate result that he uses to characterize the complete transitive hyper-
relations which satisfy Monotonicity and the following axiom of independence: if
A ∼ A∪B, then for any C we have A∪C ∼ A∪C ∪B. Moreover, the transitive decent
hyper-relations have been studied in different set-ups [(see, for example, Armstrong
(1974); Caspard and Monjardet (2003); Danilov and Koshevoy (2006); Domenach
and Leclerc (2004)].

We show that the restriction of the bijection between the decent hyper-relations and
the no-dummy heritage choice functions to this subclass is a bijection between the
transitive decent hyper-relations and the class of choice functions called closed (see
below for a formal definition). We prove that a multi-preference representation of a
transitive decent hyper-relation can be chosen such that all state preferences are weak
orders.

We will consider one more subclass of the decent hyper-relations, a class of hyper-
relations that we call ample and such that, the Lattice equivalence property holds true,
that is, for any collection Ai , i ∈ I , of equivalent menus, it holds that ∪i Ai � ∩i Ai . We
establish that the bijection restricted to this subclass is a bijection between the ample

3 Here, the term ‘specification’ means that the list of comparisons a � A determines a decent hyper-
relation.
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hyper-relations and the Plott choice functions (or path-independent choice functions).
For an ample hyper-relation, a multi-preference representation can be chosen such
that all state preferences are linear orders.

The paper is organized as follows. In Sect. 2 we introduce the class of decent
hyper-relations and provide a multi-preference model for them. A bijection between
the decent hyper-relations and the no-dummy choice functions is established in Sect. 3.
In Sect. 4 we consider a case of non-empty valued heritage choice functions. In Sect. 5,
we study the class of transitive decent hyper-relations and their relations to the class of
closed choice functions. In Sect. 6 we introduce the subclass of ample decent hyper-
relations and provide a bijection between this subclass and the class of Plott choice
functions.

2 Hyper-relations and the multi-preference model

Let X be a universal set of alternatives,4 and 2X be the set of all subsets of X . The sets
A, B, C, . . ., are the elements of 2X to be interpreted as opportunity sets or menus from
which a DM chooses. A preference, denoted by <, is an irreflexive binary relation on
X . We call hyper-relation, denoted by �, a binary relation on 2X , and we identify its
asymmetric part with ≺. HR is the set of all hyper-relations on 2X .

Now, let < be a preference of a DM on X . Then it is naturally to assume that a DM
defines a � B if either a ∈ B or a < b for some b ∈ B. We say that a hyper-relation
� is generated by <, �= hyp(<), if, for any A, B ∈ 2X , A hyp(<) B means that,
for any a ∈ A, a � B. The intended interpretation of hyp(<) is that A hyp(<) B if
B entails at least as much opportunities as A.

Let us consider three examples of preferences and the corresponding hyper-
relations.

Example 1 Let < be the ’empty’ preference, that is there are no elements x �= y of X
such that x < y or y < x holds true. Then hyp(<) is the set inclusion, A hyp(<) B
if and only if A ⊆ B.

Example 2 Let < be the ’total’ preference, for any x �= y ∈ X , x < y. Then, for any
non-empty A and B ⊆ X , A hyp(<) B.

Example 3 Pick up a pair (a, B), a ∈ X , B ⊆ X , a �∈ B. For such a pair, we define
the following preference <(a,B): for any different x and y such that x �= a and y �∈ B,
x < y holds. (For B = ∅, we get the ’total’ preference.) Then, for any non-empty
menus A and C , A hyp(<(a,B)) C does not hold if and only if a ∈ A and C ⊆ B.

One can see that a hyper-relation hyp(<) satisfies the following list of axioms.
First, there are not (absolutely) undesirable alternatives, namely:

• No Dummy (ND): For all a ∈ X , ∅ ≺ a.

The next property is

4 The reader can assume for simplicity that X is a finite set, although the finiteness of X is almost nowhere
used.
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• Monotonicity with respect to set inclusion (Mon): For all A, B ∈ 2X , A ⊆ B
implies A � B.

This assumption that every opportunity set is at least as good as every one of its
subsets is one of the less controversial requirement in the freedom of choice literature.5

Another two axioms are

• Stability with respect to contraction (Cont): For any A, A′, B ∈ 2X , A′ ⊆ A � B
implies A′ � B.

• Stability with respect to extension (Ext): For any A, B, B ′ ∈ 2X , A � B ⊆ B ′
implies A � B ′.

These axioms could be considered to weaken transitivity, i.e. if a transitive hyper-
relation � satisfies Mon, then it is stable with respect to contraction (Cont) and to
extension (Ext). These axioms reflect the following relationships between a hyper-
relation and the set-inclusion: if a set provides more freedom of choice than another,
then this a fortiori holds for any subset of the latter, and if a set offers more ‘suitable
alternatives’ than another set, then the set containing the former as its subset will
certainly provide more ‘suitable alternatives’ than the latter.

Finally,

• Union (U): Let Ai � B for some (possibly infinite) family of menus Ai (i ∈ I )
and B ⊆ X . Then ∪i∈I Ai � B.

Axiom U simply says that the union of worse (opportunity) sets is still the worst
(opportunity) set. Moreover, for the case in which X is finite, it specializes to the so-
called Robustness axiom [see Barberà et al. (2004)], saying that for all A, A

′
, B ∈ 2X ,

if [A � B and A′ � B] then A ∪ A′ � B.

Remark 1 Several scholars have used the Union axiom. In the present work, we sys-
tematically apply this property and indeed all our results heavily rely on it.

Kreps (1979, axiom (2.1), Ryan (2014, axiom K), and Lahiri (2003, Concordance
axiom), consider the following condition:

• K For any A, B ∈ 2X , A � B implies A ∪ B � B.

which, for the case of transitive monotonic hyper-relations, is equivalent to the axiom
U (defined on finite families). Indeed, let A � C and B � C . By K, A ∪ C � C and
B ∪C � C . By Mon, C � B ∪C , and by transitivity we have A ∪C � B ∪C . Again,
by K we have A ∪ B ∪ C � B ∪ C � C . Using A ∪ B ⊆ A ∪ B ∪ C and transitivity,
we obtain A ∪ B � C .

Example 4 For a finite set X , Pattanaik and Xu (1990) defined the cardinality-based
ordering �c of opportunity sets, as follows A �c B if |A| ≤ |B|. This hyper-relation
is transitive and complete, satisfies Mon, but does not satisfy U and therefore it is not
semi-decent. Moreover, it is worth noticing here that such a hyper-relation belongs to
the class of complete hyper-relations characterized by Kreps (1979).

5 This requirement is discussed in the works of several scholars [see, for example, Barberà et al. (2004)].
Kreps attributes this axiom to Koopmans [axiom (1.3) in Kreps (1979)].
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A hyper-relation generated by a preference satisfies these axioms, and they are
convenient for ordering opportunity sets. We take this list of axioms and introduce the
class of hyper-relations that is the main object of the present work:

Definition 1 A hyper-relation � is decent if it satisfies ND, Mon, Cont, Ext, and U.
(A hyper-relation � is semi-decent if it satisfies only ND, Mon, Cont, and U).

We denote by DHR and SDHR the class of decent and semi-decent hyper-relations
respectively. An immediate consequence of the definitions is the following.

Lemma 1 For a semi-decent hyper-relation � and for any A, B ∈ 2X , A � B if and
only if a � B for every a ∈ A.

Thus, in order to define a semi-decent hyper-relation � it is sufficient to set a relation
a � B between X and 2X (i.e. such that a � B whenever a ∈ A).

We wonder if there is something more in the class of decent hyper-relations except
those generated by preferences.

We use the ‘operation of intersection’ in order to define more general hyper-
relations. In other words, if we denote by <s the state (or context) dependent pref-
erences, where s ∈ S and S is the set of all (future, possible) states of nature, then
the intersection of hyper-relations generated by those preferences leads us to the con-
struction of a so-called multi-preference hyper-relation. Thus, we state:

Definition 2 For a collection {<s, s ∈ S} of preferences, the hyper-relation � being
the intersection of the hyper-relations hyp(<s), s ∈ S, that is A � B if and only if,
for every s ∈ S, there holds A hyp(<s) B, is called a multi-preference hyper-relation,
and is denoted by hyp({<s, s ∈ S}).
Lemma 2 If all hyper-relations �i , i ∈ I , are semi-decent (respectively: decent,
transitive), then their intersection is also semi-decent (respectively: decent, transitive).

From this lemma follows that any multi-preference hyper-relation belongs to the
class of decent hyper-relations.

The example in Introduction shows a multi-preference hyper-relation with two
states. Thus, the class of decent hyper-relations contains more hyper-relations than
the class of hyper-relations generated by preferences.

We now state the main results of the this section:

Theorem 1 The class of multi-preference hyper-relations coincides with the class of
decent hyper-relations.

This theorem means that every decent hyper-relation can be obtained as the intersec-
tion of hyper-relations generated by a family of state-dependent preferences. Thus, the
class of multi-preference hyper-relations exhausts the class of decent hyper-relations.

Proof of Theorem 1 Let � be a decent hyper-relation. Consider the set S constituted
from pairs (a, B) such that a ∈ X , B ⊆ X , and a �� B. For each pair (a, B) ∈ S, let us
consider the preference<(a,B) (see Example 3) and the multi-preference hyper-relation
�′:= hyp({<(a,B), (a, B) ∈ S}). We claim that � coincides with �′. According to
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Lemma 1, it suffices to check that for any pairs (c, C), c ∈ X , C ⊆ X , and c �∈ C ,
c �� C and c ��′ C hold true simultaneously. Let c �� C , than (c, C) ∈ S. Hence (see
Example 3), for �′′:= hyp(<(c,C)), there holds c ��′′ C , that implies c ��′ C .

Vice versa, let c ��′ C , then, for some pair (a, B) ∈ S, there holds c ��′′ C , where
�′′:= hyp(<(a,B)). According to Example 3 this holds if and only if a = c and
C ⊆ B. Since c = a �� B, then, because of Ext, it holds that c �� C . ��

For a hyper-relation �, the restriction of � to X is a preference <:= res(�) defined
by x < y if x � y.

For a decent hyper-relation �, we have the following inclusion hyp(res(�)) ⊆�6.
In fact, let a hyp(res(�)) B. Then either a ∈ B and hence a � B, or a res(�) b for
some b ∈ B. The latter means that a � b and, hence by Ext, it holds that a � B.

Corollary 1 Let � be a decent hyper-relation and < be the restriction of � to X.
Then, � is the intersection of hyper-relations hyp({<s}), generated by some set {<s ,
s ∈ S}, where, for each s ∈ S, <⊆<s .

Proof According to Theorem 1, � is a multi-preference hyper-relation. Let {<s, s ∈
S} be the corresponding collection of preferences, �= hyp({<s, s ∈ S}). Let < be
the restriction of � to X . Then, obviously, a < b implies a <s b, s ∈ S. ��

We also have the following characterization of the complete decent hyper-relations.

Corollary 2 A decent hyper-relation � is complete if and only if res(�) is complete.

Proof Obviously, for a complete �, the preference res(�) is also complete. Vice
versa, let res(�) be complete. Then, for any pair A, B ⊆ X , either, for any a ∈ A,
there exists some b(a) ∈ B such that a res(�) b(a) and, hence, A � B, or there exists
a ∈ A such that, for any b ∈ B, it holds that b res(�) a, and hence B � A. ��

For a complete transitive decent hyper-relation �, it holds that �= hyp(res(�)).
Without the transitivity assumption, the latter equality might be not true, see the
example in Introduction.

In what follows we consider two subclasses of the decent hyper-relations, the
subclass of transitive and the subclass of ample hyper-relations, and we study the
corresponding multi-preference representations. In order to proceed, we establish a
connection between the decent hyper-relations and the choice functions.

3 Choice functions and hyper-relations

For a preference <, one can define a contracting operator Max(<) by the rule:

Max(<)(A) := {a ∈ A � ∃ b ∈ A − a, such that a < b}.

Recall, that a contraction operator f : 2X → 2X sends a set to some of its subsets,
that is f (A) ⊆ A, A ⊆ X .

6 Let � and �′ be two binary relations, we set �⊆�′ if, for any A, B ⊆ X , such that A � B, it holds that
A �′ B.
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Contracting operators are also known as choice functions.
We interpret the choice function Max(<) as the choice of the maximal alternatives

from each subset. Such a choice function satisfies the following two properties

ND A choice function f : 2X → 2X is no-dummy if, for every x ∈ X f (x) �= ∅, that
is f (x) = x .

H A choice function f : 2X → 2X is heritage if, for A ⊆ B, there holds f (B) ∩ A ⊆
f (A).

Let us warn that, for a no-dummy choice function f , it might be f (A) = ∅ for a
non-singleton set A.

For a collection of preferences <s , s ∈ S, the choice function Max({<s, s ∈ S})
being the union ∪s∈S Max(<s) is a multi-criteria choice function.

It is easy to check that any multi-criteria choice function satisfies the axioms ND
and H.

One can observe a similarity between the multi-criteria choice functions and the
multi-preference hyper-relations. It turns out that this is a reflection of a deep relation
between the choice functions and the semi-decent hyper-relations. Such a relation
provides a bijection between the no-dummy heritage choice functions and the decent
hyper-relations. As a consequence, we obtain the coincidence of the class of no-dummy
heritage choice functions and the class of multi-criteria choice functions.

Heritage condition, the axiom H, has been first introduced by Chernoff (postulate 4
in Chernoff (1954)) and it means that if an opportunity a is chosen from an opportunity
set B then it will be also chosen from the smaller opportunity set (A ⊆ B) including
a.7

Denote by CF the class of no-dummy choice functions. Let us define a mapping
κ : CF → SDHR by the following rule. Let f be a choice function, then we define a
hyper-relation κ( f ) as follows, for any A, B ∈ 2X ,

A κ( f ) B if, for every a ∈ A, f (a ∪ B) ⊆ B. (3.1)

It is easy to check that κ( f ) is a semi-decent hyper-relation.
Let us define a mapping � : SDHR → CF by the rule:

�(�)(A) = {a ∈ A : a � A\a}.

In words, an alternative a is not chosen from A if a � A\a, i.e. adding a to A\a does
not increase the attractiveness of A.

The mapping � is anti-monotone and it holds that �(� ∩ �′) = �(�) ∪ �(�′).

Proposition 1

• κ is anti-monotone.
• For any f ∈ CF, there holds �(κ( f )) = f .
• For any f ∈ CF, the hyper-relation κ( f ) satisfies ND, Mon, Cont and U.

7 There are some other reformulation of this axiom. For instance, in the literature on stable matchings
(Roth and Sotomayor, 1990, Definiton 6.2 p. 173), the Heritage axiom is the Substitutability property: if a
worker a is hired by a firm from a list B she will be also hired from any shorter list A ⊆ B.
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Proof Item 1 is obvious. Item 2. Let, for some a ∈ A, we have a �∈ �(κ( f ))(A). By
the definition of the mapping �, we get a κ( f ) A−a. That means that f (a∪(A−a)) =
f (A) is contained in A − a, that is nothing but a �∈ f (A).

Item 3. We only have to check that the no-dummy property is properly translates
by κ , other properties of κ( f ) are obvious. Suppose that κ( f ) has a dummy, that is,
for some x ∈ X , it holds that x κ( f )∅. By definition this means that f (x ∪ ∅) ⊆ ∅.
This contradicts to that f is no-dummy. ��

As a consequence of Proposition 1, we obtain a bijection between CF and SDHR.
We illustrate mappings κ and � by the following examples:

Example 5 For the choice function 1 (i.e. 1(A) = A for every A ∈ 2X ), the corre-
sponding hyper-relation κ(1) is nothing but the set-theoretical inclusion ⊆.

Example 6 Let < be a preference, and let f = Max(<) be the choice function
rationalized by the preference <. It is easy to check that the hyper-relation κ(Max(<))

is nothing but the hyper-relation hyp(<).

Proposition 2 A choice function f ∈ C F is heritage if and only if the hyper-relation
κ( f ) satisfies the axiom Ext.

Proof Let f ∈ C F be heritage, a κ( f ) A and A ⊆ B. We have to check that a κ( f ) B
holds true. In fact, a κ( f ) A means that f (a ∪ A) ⊆ A. We have to check that
f (a ∪ B) ⊆ B. We may assume that a �∈ B, otherwise the inclusion is obviously
valid. On the contrary, suppose f (a ∪ B) �⊆ B. Then, by H, a ∈ f (a ∪ B) implies
a ∈ f (a ∪ A). Since f (a ∪ A) ⊆ A, we have a ∈ A, that contradicts to a �∈ B.

Vice versa, let κ( f ) satisfy Ext and the triple (a, A, B) be such that A ⊆ B and
a ∈ f (B) ∩ A. Because of item 2 of Proposition 1, we have f = �(κ( f )). The
inclusion a ∈ f (B) means that a �� B − a, where �:= κ( f ). Due to the axiom Ext,
we have a �� A − a. The latter means a ∈ f (A). ��

A consequence of these Propositions and Theorem 1 is the following

Proposition 3 The class of no-dummy heritage choice functions coincides with the
class of multi-criteria choice functions.

Remark 2 Puppe (1996) introduced the notion of essential elements. Namely, for a
hyper-relation �, an alternative a ∈ A is essential in A if A\a ≺ A. In other words,
removing such an alternative decreases the attractiveness of the opportunity set. We
claim that, for a semi-decent hyper-relation �, an alternative is essential in A if and
only if it belongs to κ−1(�)(A). This follows from:

Lemma 3 For a semi-decent hyper-relation � the following two statements are
equivalent:

(1) A � A\a,
(2) a � A\a.
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Proof Suppose that A � A\a, then, since a ∈ A � A\a, we obtain that a � A\a.
Conversely, let a � A\a, then, since A\a � A\a, we conclude by axiom U that
A = a ∪ (A\a) � A\a. ��

Remark 3 There are at least three other possible mappings from the set of choice
functions to the set of hyper-relations:

(i) The first mapping is defined by associating a hyper-relation �′
f to a choice

function f as follows:

A �′
f B ⇐⇒ a /∈ f (a ∪ B) ∀ a ∈ f (A) − B.

that means that a /∈ f (a∪B)holds only for the elements a ∈ f (A)\B. Obviously,
A � f B implies A �′

f B. This hyper-relation satisfies (only) the Mon axiom.
(ii) The second mapping was considered in Puppe (1996): for a choice function f ,

a hyper-relation �′′
f is defined by the rule:

A �′′
f B ⇐⇒ f (A ∪ B) ⊆ B.

This hyper-relation satisfies only Mon. We observe that if f is a heritage choice
function, then � f ⊆�′′

f , that is A � f B ⇒ A �′′
f B.8

(iii) The third mapping was considered in Puppe and Xu (2010) and Ryan (2014)

A �∗
f B ⇐⇒ f (A ∪ B) ∩ B �= ∅.

Such a hyper-relation satisfies only Mon.
Thus, we conclude that these three mappings do not have so many suitable properties

as the mapping κ .

4 Non-emptiness

It is now well established that the preferences among the basic alternatives have a
crucial role in capturing the desire for freedom of choice of a DM. Indeed, an available
alternative can only contribute to the freedom of a decision maker if it is in some (weak)
sense valuable to him/her. An undesirable option does not expand the personal freedom.
In other words, not all available alternatives constitute an essential contribution to the
freedom in a certain decision situation: for a menu A could exist an alternative x ∈ A
such that A\ {x} is ranked not below A [see Puppe (1996)]. Those alternatives whose
availability contributes to the agent’s freedom -as said- are called essential.

8 We provide a proof of the latter claim. Suppose that A ��′′
f B, that is there exists a ∈ f (A ∪ B) such

that a �∈ B. Then, since f is a heritage choice function and a ∈ A\B, we obtain that a ∈ f (a ∪ B)

(a ∪ B ⊆ A ∪ B and a ∈ f (A ∪ B) ). Hence, A �� f B, since A � f B implies a /∈ f (a ∪ B)).
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Definition 3 A hyper-relation � is said to be well if every non-empty menu A ∈ 2X

contains essential elements.
In terms of the corresponding choice function �(�) this requirement means that

�(�)(A) is non-empty for any non-empty set A ∈ 2X .

Let us characterize now the well hyper-relations (or non-empty-valued choice func-
tions).

Definition 4 A preference < is well if every increasing sequence x1 < x2 < . . . is
finite.

Note that any well preference is irreflexive and acyclic. In the case of finite X , a
preference < is well if and only if it is acyclic. Then, we have:

Lemma 4 The following two statements are equivalent:

(1) a preference < is well;
(2) the hyper-relation hyp(<) is well.

Proof Suppose that hyp(<) is not well. This means that some menu A has not a
maximal element, that is, for any a ∈ A, there is a better element a′ ∈ A such that
a < a′. Obviously, this leads to an infinite increasing chain.

Conversely, let < be a non-well preference relation, and let x1 < x2 < . . . be an
infinite increasing chain. It is obvious that the set A = {x1, x2, . . .} has not a maximal
element. ��

In terms of choice functions, we have:

Proposition 4 Let f be a heritage choice function. The following three statements
are equivalent:

1. f (A) is non-empty for any non-empty menu A;
2. there exists a well preference < such that Max(<) ⊆ f ;
3. there exists a well linear order < such that Max(<) ⊆ f .

Let us note that applying this proposition to a well preference we obtain the fol-
lowing generalization of the Szpilrajn theorem: any well preference can be extended
to a well linear order.

Proof Obviously 3) ⇒ 2); 2) ⇒ 1) by Lemma 4. It remains to prove that 1) ⇒ 3).
We (almost) explicitly construct such an order. To make the construction more clear,
we consider from the beginning that X is finite. In this case, the desired linear order
is constructed with the help the following simple peeling procedure.9

Since f (X) is a non-empty set, we can take some element x1 from it. Next, we take
an element x2 from the (non-empty) set f (X\x1), and so on. In the case of a finite set

9 The peeling order is a variant of the peeling rank in Statistics. Namely, for a finite set of points X in an
Euclidean space, let us consider the following chain of sets X0 := X , X1 := X0 \ ex(X0), where ex(Y )

denotes the set of points of Y which belong to the boundary of its convex hull, X2 := X1 \ ex(X1), . . . .
Then, for a subset A ⊆ X its rank r is defined as maximal number r such that A ⊆ Xr . The peeling rank
is used in non-parametric rank tests [Eddy (1984)].

123



Hyper-relations, choice functions

X , we exhaust the whole X after a finite number of steps and we obtain a linear order
x1 > x2 > · · · > xn . This order is compatible with f . Indeed, let A be a (non-empty)
menu, and let xk be a maximal element in A. We need to show that xk ∈ f (A). By
definition, A ⊆ X\{x1, . . . , xk−1} and contains xk . By the Heredity property of f ,
xk ∈ f (A).

In the case in which X is infinite we can proceed as follows. Let s be a selector of f ,
that is a mapping s : 2X\{∅} → X such that s(A) ∈ f (A) for every non-empty menu
A. Such a selector exists by Zermelo’s axiom of choice. Applying Bourbaki (1957)[III,
§2, Lemma 3], we obtain a well linear order < on X such that s(X\[> x]) = x for
any x ∈ X . Here [> x] denote the set {y ∈ X, y > x}. We claim that Max(<) ⊆ f .

Indeed, let A be a non-empty set and m be the (unique) maximal element of A such
that a ≤ m for any a ∈ A. Then A ⊆ X\[> m], and m = s(X − [> m]) ∈ f (X − [>
m]). Since f is a heritage choice function, we have that m ∈ f (A). ��
Remark 4 Since the choice in f (A) is arbitrary, the peeling procedure is not unique.
However, we can construct a canonical weak order by picking f (X) at the first step,
f (X\ f (X)) at the second one, and so on. For the case in which X is infinite, this
construction can be obtained by using transfinite induction.

5 Transitive decent hyper-relations and closed choice functions

Let � be a semi-decent hyper-relation. Then we define an extensive operator10 μ(�) :
2X → 2X associated to � as follows: for any A ∈ 2X , μ(�)(A) = {x ∈ X : x � A}.
Obviously, A ⊆ μ(�)(A) � A. We denote the set of extensive no-dummy operators
by EO. Thus, we have a mapping μ : SDHR → EO.

Let us define the inverse mapping from EO to SDHR: for an extensive operator μ,
we set A �(μ)B if A ⊆ μ(B). Obviously, �(μ) is a semi-decent hyper-relation and
it is easy to check that these mappings are one the inverse of the other.

An extensive operator μ is called monotone if A ⊆ B implies that μ (A) ⊆ μ (B).
The set of all monotone no-dummy extensive operators is denoted as MEO. The
following easy lemma holds true.

Lemma 5 The extensive operator μ(�) is monotone if and only if � is a decent
hyper-relation.

Thus, we have a bijection between MEO and DHR.
Kreps (1979) has obtained a decomposition-type result based on a relationship

between the transitive decent hyper-relations and the closure operators, namely oper-
ators that are extensive, monotone and idempotent (i.e. μ (μ (A)) = μ (A)).11 Let

10 A mapping μ : 2X → 2X is extensive if A ⊆ μ (A) for all A ∈ 2X . An extensive mapping is no-dummy
if μ(∅) = ∅.
11 Notice that the transitive decent hyper-relations have been studied in the literature on implication
systems with the name of complete implication systems, CIS, see, for example Falmagne and Doignon
(2011) and Domenach and Leclerc (2004). Specifically, CIS are the dual of transitive decent relations. In
1974, Armstrong (1974) has shown that CIS are in a one-to-one correspondence with the closure operators.
Kreps proves the same result [Lemma 2, Kreps (1979)].
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us recall this relationship by stating the following well-known result [see Armstrong
(1974); Caspard and Monjardet (2003); Kreps (1979); Malishevskii (1996)]:

Proposition 5 If � is a transitive decent hyper-relation then μ = μ(�) is a clo-
sure operator. Conversely, if μ is a closure operator then the hyper-relation �(μ) is
transitive and decent.

In what follows, we present a characterization of the transitive decent hyper-
relations in terms of the class of closed choice functions, namely heritage choice
functions that also satisfy the following property:

• W Let x /∈ A. If x ∈ f (x ∪ A) and y /∈ f (y ∪ A) for every y from some set
Y , then x ∈ f (x ∪ Y ∪ A).

Danilov and Koshevoy (2009) have provided a particular formulation for W in the
case in which the set Y is a singleton. When the universal set of alternatives X is finite
both formulations of W are equivalent. Then, we have that:

Proposition 6 For a decent hyper-relation � the following statements are equivalent

(1) � is transitive;
(2) The corresponding choice function f = �(�) is no-dummy and closed.

Proof 1) ⇒ 2). Let x, y and A be as in W, and suppose that x ∈ f (x ∪ A),
y /∈ f (y ∪ A) for every y ∈ Y , but x /∈ f (x ∪ Y ∪ A). By definition, y /∈ f (y ∪ A)

means that y � A for every y ∈ Y . Hence, Y � A and (by U) Y ∪ A � A. Now,
x /∈ f (x ∪ Y ∪ A) means x � A ∪ Y . Then, by transitivity of �, we obtain x � A,
that is x /∈ f (x ∪ A). Therefore, a contradiction.

2) ⇒ 1). We have to check that, for a closed choice function f , the hyper-relation
�:=� f is transitive. That is, a � B and B � C imply a � C . Obviously we can
assume that a /∈ C ∪ B.

Set Y = B\C . Since for every y ∈ Y , y � C and y /∈ C , we have y /∈ f (y ∪ C)

for every y ∈ Y . Suppose that a �� C . Then, a ∈ f (a ∪ C), and by W we obtain
a ∈ f (a ∪ Y ∪ C) = f (a ∪ B). The latter means that a �� B, that contradicts the
assumption a � B. ��

Suppose that a preference < is the irreflexive part of a preorder (or quasi-ordering,
that is a reflexive and transitive binary relation) ≤ on X . It is obvious that the hyper-
relation generated by < is transitive and no-dummy. The following result is well-
known:

Theorem 2 [Kreps (1979)]. Let � be a decent hyper-relation. The following property
of � are equivalent:

(1) � is transitive;
(2) � has a multi-preference representation whose state preferences are the irreflex-

ive parts of preorders;
(3) � has a multi-preference representation whose state preferences are the irreflex-

ive parts of weak orders;
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(4) � has a multi-preference representation whose state preferences are the irreflex-
ive parts of dichotomous weak orders.

Let us recall briefly the argument of the proof. As we have mentioned above, a
transitive decent hyper-relation defines a closure operator μ, or a closure space F of
‘closed’ sets (a set F is closed if μ(F) = F). Now, for every closed set F , we can
consider the closure subspace FF (in F) consisting of three closed sets {∅, F, X}.
Since F = ∪F FF , the initial hyper-relation � is represented as the intersection of
hyper-relations corresponding to the closure systems FF . It is straightforward to
check, that the corresponding hyper-relations are generated by the irreflexive parts of
dichotomous preorders ≤F , defined by the rule: x ≤F y if x ∈ F or if y ∈ X\F .

We illustrate the foregoing result by:

Example 7 Let � be a hyper-relation corresponding to the following closure operator
μ: μ(x) = x for every x ∈ X and μ(A) = X if |A| ≥ 2. This hyper-relation
is generated by the preference �=, that is the irreflexive part of the total preference
relation ≤ (x ≤ y for any x, y ∈ X ).

Example 8 Let X = {a, b, c} and let � be a hyper-relation corresponding to the
closure operator μ defined as follows: μ(x) = x for every x ∈ X , μ(ac) = ac,
and μ(A) = X if b ∈ A. Therefore � is a decent transitive hyper-relation. It has a
multi-preference representation (<1,<2), where:

<1 <2

a c

bb

a c

Note that the preference <2 is not transitive, but it is the irreflexive part of the preorder
≤, where a ≤ c ≤ a.

6 Ample hyper-relations and Plott functions

We now consider a subclass of the decent hyper-relations such that in the multi-
preference representations the state preferences can be chosen as complete, asymmet-
ric, and transitive preferences (orders).

In the case in which the universal set of alternatives X is finite, it is well-known that
this subclass is closely related to so-called path-independent or Plott choice functions
[see, for example, Barberà et al. (2004); Nehring and Puppe (1999); Danilov and
Koshevoy (2006)].

In order to proceed with our analysis, we introduce two notions.
Let us say that a hyper-relation � satisfies the property of Lattice Equivalence if,

for any collection of equivalent menus Ai , i ∈ I , that is, for any i , j ∈ I , it holds that
Ai � A j , the following holds true
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• LE ∪i∈I Ai � ∩i∈I Ai .

Definition 5 A decent hyper-relation � is ample if it satisfies Lattice Equivalence
property LE.

Let � be a decent hyper-relation, and let f := �(�) be the corresponding choice
function. Then, we say that � is framed if, for every menu A ∈ 2X , the following
property holds:

• F A � f (A).

Property F means that any menu has sufficiently many essential alternatives. In
Puppe (1996), this axiom is called ‘Independence of Non-essential Alternatives’. It
also reminds the so-called Krein-Milman property of the convex polytopes, saying
that every point of a convex polytope is a convex combination of the extreme points
of the polytope. We will show that axioms LE and F are also closely related to the
following well-known condition:

• O For any A, B ∈ 2X and a choice function f , if f (A) ⊆ B ⊆ A then
f (B) = f (A).

The property O was introduced by Chernoff [postulate 5∗ in Chernoff (1954)] and is
called Outcast property. It says that removing from an opportunity set the alternatives
that are not chosen by a DM does not affect the freedom of choice provided by the set
itself. In the language of essential elements, this property takes the following form: if,
for a collection A′ of elements of A, it holds that A � A −a, a ∈ A′, then A � A \ A′.

It is easy to see that, for the class of decent hyper-relations, the latter property
follows from LE.

Choice functions that satisfy both conditions H and O constitute an important
class of contracting operators called path-independent because they also satisfies the
following suitable property:

• PI A choice function f is path-independent if, for any A, B ∈ 2X ,

f (A ∪ B) = f ( f (A) ∪ B)

More precisely (see e.g. Aizerman and Malishevskii (1981); Moulin (1985);
Danilov and Koshevoy (2005)), a choice function is path-independent if and only
if it satisfies the axiom H and O. These choice functions are also called Plott functions
in Danilov and Koshevoy (2005) after the celebrated work of Plott (1993).

Lemma 6 Let � be a decent hyper-relation and let f be the corresponding choice
function. Suppose A � B ⊆ A. Then f (A) ⊆ B.

Proof Indeed, if B does not contain some a ∈ f (A) then B ⊆ A\a. Since A � B, by
Ext we have that A � A\a. But this contradicts the fact that a is essential in A. ��

We then state the following:

Theorem 3 Let f be a choice function and �:= κ f be the corresponding hyper-
relation. The following statements are equivalent:
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1. � is an ample hyper-relation;
2. f is a no-dummy Plott function;
3. � is a framed hyper-relation.

Proof 3) ⇒ 2). By Theorem 1, we have that f satisfies H. Let us check that f also
satisfies O. Suppose that f (A) ⊆ B ⊆ A. Then, by F, B ⊆ A � f (A), therefore, we
have B � f (A). Applying Lemma 6 to B � f (A) ⊆ B we obtain f (B) ⊆ f (A).
The reverse inclusion follows by the heredity property of f .

2) ⇒ 3). By Theorem 1, � is a decent hyper-relation. We have to show that
A � f (A) for any menu A, i.e. that f (a ∪ f (A)) ⊆ f (A) holds for every a ∈ A.
This follows by applying O to the inclusions f (A) ⊆ a ∪ f (A) ⊆ A.

For the implication 1) ⇒ 3), recall that, for a ∈ A, a �∈ f (A) holds if and only if
a � A − a holds. Because of the union axiom U, a � A − a implies A � A − a, or
equivalently, A is equivalent to A − a. Thus, f (A) is equal to the intersection of all
A − a which are equivalent to A. This and LE imply A � f (A).

For the implication 3) ⇒ 1): By the union axiom U, we have, for every j ∈ I ,
∪i Ai � A j ; since f (∪i Ai ) ⊆ ∪i Ai , due to Cont, it holds that f (∪i Ai ) � A j . Thus,
we have f (∪i Ai ) � A j ⊆ ∪i Ai , and we are in the framework of Lemma 6, hence,
it holds that f (∪i Ai ) ⊆ A j for any j ∈ I . Thus, f (∪i Ai ) ⊆ ∩i Ai . By the property
F, we have ∩i Ai � f (∩i Ai ) and, hence, it holds that f (∪i Ai ) ⊆ ∩i Ai � f (∩i Ai ).
Thus by Ext, we conclude that LE holds true. ��
Lemma 7 Let f be a Plott function, and let B and C be some menus. The following
three statements are equivalent:

(1) B κ( f ) C;
(2) f (B ∪ C) ⊆ C;
(3) f (B ∪ C) = f (C).

Proof 1) ⇒ 2). Let Bκ( f )C , then, by U, B ∪Cκ( f )C , hence, by Cont ( f (B ∪C) ⊆
B ∪ C), we have f (B ∪ C)κ( f )C . Thus, it holds that f (B ∪ C)κ( f )C ⊆ B ∪ C . By
Lemma 6, we have f (B ∪ C) ⊆ C , that is 2).

2) ⇒ 3). This follows by applying O to the chain of inclusions f (B ∪ C) ⊆ C ⊆
(B ∪ C).

3) ⇒ 1). By F, we have B ∪ C κ( f ) f (B ∪ C) = f (C) ⊆ C . Therefore, due to
Ext, it holds that B ∪ C κ( f ) C and, by Cont, we have B κ( f ) C . ��

From this lemma it follows that, for a Plott function f , the hyper-relation κ( f ), �′
f

and �′′
f in Remark 2 coincide.

Corollary An ample hyper-relation is transitive.

Proof Let f = �(�). Consider a triple A � B � C . Then, by Theorem 3 (equivalence
1) and 3)), we have A ∪ C ⊆ A ∪ B ∪ C � f (A ∪ B ∪ C). Due to Cont, it holds
that A ∪ C � f (A ∪ B ∪ C). Then, by Theorem 3 (equivalence 1) and 2)), we have
f (A ∪ B ∪C) = f ( f (A ∪ B)∪C). Due to Lemma 7, it holds that f (A ∪ B) = f (B)

and f (B ∪ C) = f (C). Hence, it holds that f ( f (A ∪ B) ∪ C) = f (C). Thus,
A ∪ C � f (C), and by Lemma 7, it holds that f (A ∪ C ∪ f (C)) = f (C), that is
nothing but f (A ∪ C) = f (C). Therefore, by Lemma 7, we have A � C . ��
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Let us observe that a no-dummy Plott function f is non-empty-valued. In fact,
suppose f (A) = ∅ for a non-empty set A, and let a ∈ A. From f (A) = ∅ ⊆ {a} ⊆ A
we obtain f (a) = f (A) = ∅, that is a contradiction.

It is well known (see e.g. Aizerman and Malishevskii (1981); Moulin (1985);
Danilov and Koshevoy (2005) that, for the case in which X is finite, any no-dummy
Plott function can be represented as the union of choice functions rationalized by linear
orders. We show that this result can be generalized to an arbitrary set X .

In order to do that, we start with the rationalized choice functions. Let < be a
preference and Max(<) be the choice function rationalized by <.

Lemma 8 Max(<) is a no-dummy Plott function if and only if < is a well order.

Proof Suppose that < is a well order on the set X . We know that f := Max(<) is no-
dummy and heritage. We need to check the axiom O. Suppose that f (A) ⊆ B ⊆ A;
we have to show that f (B) ⊆ f (A). Let b ∈ f (B), that is b is a maximal element of B.
We assert that b is maximal in A. In the opposite case b is dominated by some element
a ∈ A (b < a), which we can assume to be maximal in A. Then a ∈ f (A) ⊆ B, and
b < a. But this contradicts the maximality of b in B.

Vice versa, suppose that Max(<) is a no-dummy Plott function. By Lemma 4 and
Theorem 3, < is a well relation. From Corollary 3, < is transitive, i.e. it is an order. ��

We now establish

Theorem 4 Let f be a heritage choice function. The following statements are equiv-
alent:

(1) f is a no-dummy Plott function;
(2) f is the union of choice functions rationalized by well linear orders;
(3) f is the union of choice functions rationalized by well orders.

Proof 1) ⇒ 2). Following the proof of Proposition 4, every selection s of f defines a
well linear order <s on X such that fs := Max(<s) ⊆ f . Let us show that the union
of these ‘linear’ choice functions fs is equal to f .

Let a ∈ f (A), then there exists a selection s of f such that fs(A) = a. Indeed,
consider a set B containing A, i.e. A ⊆ B. There are two cases:

1. f (B) �⊆ A, and
2. f (B) ⊆ A. Notice that in this case a ∈ f (B) by Heredity of f .

Let us pick a selection s of f which satisfies two additional properties: in case 1.
s(B) /∈ A; in case 2. we require s(B) = a. Such a selector exists. Now let ≤s be the
well linear order constructed in Proposition 5. We claim that fs(A) = a. Indeed, let
m ∈ A be the maximal element in A with respect to the order ≤s (so that fs(A) = m),
and let B = X − [> m]. Obviously, A ⊆ B and m = s(B). Therefore, only case 2 is
possible and m = a.

By Lemma 8, we have that 2) ⇒ 3) and 3) ⇒ 1). ��
Corollary 3 Every ample hyper-relation has a multi-preference representation, where
the state dependent preferences are well orders.
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