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A survey of the results relating to the application of gross substitutability in 

economic equilibrium theory. The topics considered include existence and unique- 

ness of equilibrium, comparative statics, coalition stability, and stability of 

price-adjustment tatonnement processes. The main theorems cover the case of 

multivalued demand satisfying the gross substitutability condition and, in 

particular, are applicable to linear exchange models. 

Mappings endowed with the property of gross substitutability occur in many branches of 

mathematical economics, in multivariable control theory, and also in other fields. The cor- 

responding literature is quite extensive. This survey mainly covers the works with economic 

equilibrium orientation published after 1965. Earlier results are only treated partially, 

and most of them can be found in the monographs [36, i0, 19, 20]. 

An essential feature of our survey is the systematic treatment of multivalued mappings 

with gross substitutability recently introduced in [26, 28, 57]. This approach enabled us 

to incorporate in the general theory all the linear models which previously required special 

methods. 

The following notation system is used in the article. If X is a set, then 2 X is the 

system of all its subsets, int X is the interior of X. R ~ is the n-dimensional euclidean 

space, R+ n, R_ n are sets of vectors in R n with nonnegative and nonpositive components, 

respectively; x=(x~) is a vector with components x i whose dimension is specified in each 

particular case. If x, y6R ~ then xy denotes the scalar product of the two vectors. If 

is a scalar, then ~x is the product of the vector by the corresponding number. If 

M={l,...,m} is the set of integers from 1 to m and dhER n, the symbol (d h, kGM) denotes 

a naturally ordered system of vectors. 

Definitions, theorems, formulas, etc., and subsections are identified by two-digit 

notation: the first number represents the corresponding section, and the second number is 

the sequence within the section. 

i. DEFINITIONS, EXAMPLES, MAIN ASSUMPTIONS 

i.i. We start with some basic definitions. Let P~R ~ and the function ~=(~) 

associates with each vector p~P a certain vector ~)(p)6R ~. 

Definition i.i. We say that the function ~ has the property of gross substitutability 

(g.s.), and call it a GS-function,* if ~(p) is nondecreasing in pj for all i, j, i # j. 

*The notation is amnemonicrepresenting"gross substitute;" note that the symbols ~ used 
for the function and p for its argument are associated with their interpretation as "demand" 
and "prices." 
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Definition 1.2. If ~(p) is increasing in pjVi, ],i~=] , then ~ satisfies the 

property of strict gross substitutability and is called a strict GS-function. 

We sometimes speak of strict gross substitutability in differential form, implying the 

condition 

O ~ ( P )  > 0  Vi, ], i@]andVPEP. ( 1 . 1 )  Op] 

L e t  P~P, q6P, N = { I  . . . . .  n} �9 We u s e  t h e  n o t a t i o n  

I(p, q)={i]p~=q~, ~N}. ( 1 . 2 )  

D e f i n i t i o n  1 . 3 .  A G S - f u n c t i o n  i s  c a l l e d  i n d e c o m p o s a b l e  i f  f o r  a l l  pCP, q6P t h e  c o n d i -  

t i o n  p<q i m p l i e s  t h e  i n e q u a l i t y  

rain ( ~  (p)-- ~ (q)) < 0. 
i~f(p,q) 

The notion of substitutes was introduced by Hicks [56] and the term "gross substitut- 

ability" is due to Mosak [68]. There is, however, no uniform terminology to this date. Some- 

times gross substitutability (g.s.) is identified with the property in Definition 1.2, and 

g.s. in the sense of Definition i.i is called "weak gross substitutability." Strict gross 

substitutability is sometimes also called strong. Other terminology is also used. 

The origin of the term "gross substitutability" is associated with the interpretation of 

~) as the demand function dependent on the price vector p. This property a priori holds if 

the user regards all the goods as substitutes; then as the price of one good increases, the 

demand for all the other goods does not decrease.* This is, of course, not always so. In 

consumption theory, complementarity is defined in addition to substitutability (see Sec. 7). 

Thus, butter and margarine are examples of substitutes, while gasoline and automobiles are 

examples of complements. 

Although gross substitutability is not a universal property, it has been studied by many 

authors. This is due to several factors. First, gross substitutability is a fairly frequent 

phenomenon (see Subsec. 1.2). Second, the results relating to gross substitutes are also 

applicable to complementary goods and to "mixed" systems 6Sec. 7). Third, this property 

combined with certain additional assumptions ensures "correct" (i.e., consistent with economic 

intuition) behavior of the system. For models with gross substitutability we can prove con- 

vexity of the set of equilibrium prices or even their uniqueness (Secs. 2, 3), elucidate the 

variation of the equilibrium as a function of various exogenous parameters (Sec. 4), establish 

convergence of price adjustment (tatonnement) processes (Sec. 6), etc. It is by no means 

clear that all these results can be derived also for a wider class of cases. 

In a number of important cases (see Subsec. 1.2), demand is not a single-valued function 

of the price vector. Therefore, the following generalization of gross substitutability was 

proposed in [26, 28]. 

Let PeR n and let the mapping~:associate witheach vector p~P a certain set ~ ( p ) ~ R  ~. 

*The meaning of the adjective "gross" will be elucidated in Subsec. 1.2. 
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Definition 1.4. A mapping ~ has the property of gross substitutability, and is called 

a GS-mapping, if for any two vectors p, q from P such that p<q and f(p, q)=~ (see (1.2)) 

and for any d=(d~)6~(p), )=(fi)6~)(q) , we have 

rain (dt--fl)~O. (i.3) 
iC/(p,q) 

If, moreover, for p # q we have a strict inequality in (1.3), the GS-mapping is called 

indecompo s able. 

The following proposition is easily proved. 

Proposition i.i. Let ~ be a single-valued function. If ~) satisfies Definition i.I, 

then it is a GS-mapping in the sense of Definition 1.4. Conversely, if ~ is continuous, 

defined on an open set P, and is a GS-mapping, then it has the property of gross substitut- 

ability in the sense of Definition i.i. 

Definition 1.3 and the notion of indecomposable GS-mapping are similarly related. 

We will soon show (see Example i.i) that the continuity condition in the second part of 

Poposition I.i cannot be relaxed. Thus, a single-valued GS-mapping and a GS-function are not 

equivalent concepts. 

The gross substitutability property in the many-valued case is not additive in general 

(see Example 1.2). However, the GS-mappings arising in many equilibrium models belong to a 

certain subclass which is closed under algebraic addition. This subclass merits a special 

definition. 

Definition 1.5 [26]. We say that ~) is an AGS-mapping if for any vectors p=(Pi), q= 

(qi) from P such that p<q, I(p,q)=/=fZ and for any d=(d~)6~O(p), f=(fi)6~)(q) , we have 

q,/,. (1.4) 
~@I (p,q) iEl (p,q) 

If, moreover, for p # q we have a strict inequality in (1.4), the AGS-mapping is called 

indecompo sable. 

Independently of [26, 28], Howitt [57] defined a class of mappings occupying an inter- 

mediate position between AGS-mappings and indecomposable AGS-mappings. 

If P~i~It[~+'~ , then an (indecomposable) AGS-mapping is obviously a(n) (indecomposable) 

GS-mapping. 

GS- and AGS-mappings have a natural economic interpretation. 

Let ~(P) be the collection of all possible demand vectors corresponding to the price 

vector p; assume that the prices of some commodities have increased to q~, i~I(p, q) �9 Then 

(1.3) implies that, for all the possible realizations of demand at the points p and q, there 

is a commodity with unchanged price the demand for which does not decrease; inequality (1.4) 

implies that in this case the cost of purchasing all the commodities with unchanged prices 

does not diminish. 

In what follows we will require the following concept from [.27] (see also [i]). 

Definition 1.6. The mapping ~-:p-+2 Rn, P~R z is nondecreasing if for any vectors p, 

q, d, f such that pEP, qeP, p<q, d6~-(p), f~-(q), there are vectors d~6~-(P), f~6~(q) satisfy- 

ing the inequalities 
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d<f', [>d'. (1.5) 

If for p # q the inequalities in (1.5) are strict, then s is increasing. 

We say that ~- is nonincreasing (decreasing) if the mapping (--~a-) is nondecreasing 

(increasing). 

Definition 1.7. The mapping ~-:p-+2 nn, PeR z is called normal (strictly normal) if for 

any p6P the mapping ~)p(k)=~-(%p) is nondecreasing (increasing). 

1.2. Examples of GS,Mappings. In equilibrium theory it is generally assumed that each 

consumer (or each group of consumers) is characterized by an objective function u(x) (where 

x is the n-dimensional vector of consumption goods), and the value of his demand function is 

the solution of the problem maximizing u(x) subject to the budget constraint 

u(x)---*max, px<~, x>~O, (1.6) 

where ~ is the consumer income. 

Denote by ~(P, 6) the set of solutions of the problem (1.6). Our immediate objective 

is to discuss the conditions which ensure gross substitutability of ~(p, ~) for P=intR+ = 

and a fixed ~>0 (the case 6=0 is self-evident). Since ~(p, 6) is positive homogeneous, 

it suffices to check gross substitutability for ~=I. 

By the Slutsky equation [30, p. 255], each derivative 0~i/0p~ is the sum of two compon- 

ents, representing the "income effect" and the "substitution effect." The substitution ef- 

fect is associated with simultaneous changes in prices and income, leaving the maximum utility 

level unchanged. Gross substitutability, on the other hand, is the outcome of both these 

effects, which is emphasized by the term originally introduced in [68] (for a discussion also 

see [20, p. 305]). 

Given the Hessian matrix of the function u, we can compute the derivatives Of G~/Opj [30]; 

in this way, we obtain necessary and sufficient conditions of gross substitutability for a 

smooth u. These conditions are very cumbersome and difficult to use. However, in the par- 

ticular case when 

~ (x)= '~__ u~ (x,), (1.7) 
/ = I  

a simple criterion is available, which is applicable if the consumer income is a function of 

the prices. 

THEOREM i.i. Let the function (1.7) have no maximum on R+ n, let ui(x i) be continuous 

and concave, and u i' (xi)x i be defined* for &>O and nondecreasing for all s Also assume 

that the function 6(P) is nondecreasing and nonnegative on intR+n.. The~ ~-(p)=~(p, 6(p)) 

is an AGS-mapping on in{R+ n 

This proposition follows directly from Slutsky's results [30] if 6(p)=l , u is twice 

continuously differentiable and strictly concave, and ~(p, i)>0 for all p>0 Then ~(p, 

i) is a strict GS-function. It is noted in [18] that if strict positivity is relaxed, then 

~(p, I) remains a GS-function, but is not necessarily strict. For linear u, Theorem i.i 

*Concavity implies that u(tx+(l--t)y>~tu(x)+(l--t)u(y), 0<t~l, x, y6R+ ~ By u' i we denote the 

derivatives of u i. 
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was proved in [26] (see also [57]). The formulation includes the case of multivalued demand 

with nonlinear u. 

The proof of Theorem i.i follows from an analysis of optimality conditions for the 

problem (1.6). We can similarly show that if, in addition to the assumptions of Theorem i.i, 

the functions u/(.v~)& are strictly increasing and ~-(p)~intR+ ~ for all p>0 , then 

the AGS-mapping ~-(p) is indecomposable. 
p~ 

By T h e o r e m  1 . 1 ,  o b j e c t i v e  f u n c t i o n s  o f  t h e  f o r m  ~ ( x ) - -  f~txi , w h e r e  0 - ~ . ~ i < 1 ,  ~i 

m a x  ~ i  > 0 , g e n e r a t e  a demand w h i c h  i s  an  A G S - m a p p i n g .  I f  zQ'(xl)-~ @ oo f o r  x i -~ @OVi , 
i = I  , . . ,  ,I~ 

t h e n  ~ ( p ,  8(p)) i s  i n d e c o m p o s a b l e .  

Let us consider two further examples from [26], which illustrate the relationship between 

the concepts defined above. 

Example i.i. A single-valued d~scontinuous GS-mapping (in the sense of Definition 1.4) 

does not necessary satisfy Definition i.i. Let the mapping ~(p, I) be generated by the 
3 

problem (1.6) with ~t(x)-=~xi and ~(p)---~! In order to obtain a suitable example, it 
i=l 

suffices to consider the function ~@=(p)~@(p, 1) subject to two conditions: ~(I, I, I)==(0,0, I) 

and  S ( 2 ,  1, 1)--(0~ 1, 0) 

Example 1.2. The sum of two GS-mappings is not necessarily a GS-mapping. To show this, 

consider the sets of solutions of two extremal problems 

x ~ @ 2 x 2 @ x a - ~ m a x ,  plx1@p,2x2@p3xa~<16, x i > 0 ;  

&+x2v-xa~max, plx~p2x~2pa.v.:3~16, X i > 0  

f o r  p = ( 2 ,  2 ,  1) and  p = ( 3 ,  2 ,  1 ) .  

N o t e  t h a t  t h e  s e c o n d  p r o b l e m  g e n e r a t e s  a g S - m a p p i n g  w h i c h  i s  n o t  an  A G S - m a p p i n g ;  a n o t h e r  

e x a m p l e  c a n  b e  d e r i v e d  f r o m  Lemma 1 i n  [ 2 5 ] .  

Some classes of utility functions (smooth but not necessarily representable in the form 

(1.7)) for which ?~(p, I) is a GS-function are indicated in [33]. Examples of production systems 

whose supply function (with minus sign) satisfies Definition I.i are also given in [33]. 

1.3. The case of linear dependence of income on prices is of special importance in 

equilibrium theory. Thus, 6(p)=p~ , where w6R+ ~ (pw is the value of the resources w held 

by the trader). Transforming the Slutsky equation, Fisher [48] obtained necessary and suf- 

ficient conditions (in terms of ~F(p, ~) ) ensuring g.s. of ff(p, p~) for all w~R+ '~ These 

conditions constitute relationships between income elasticities of demand, Allen-Uzawa elas- 

ticities of substitution, and the quantities p~/~ The proof of these conditions requires 

lengthy mathematics. 

The relationship between gross substitutability of the mappings ~(p, ~) and ~(p, pw) 

becomes more transparent if ~(p, I) is normal. By positive homogeneity of ~F(p, ~) in 

(p, ~) , normality of ~(p, 1) implies that ~(p, ~) is nondecreasing in the income variable 

for any fixed p. 

For single-valUed demand functions, the normality property was investigated originally 

by Slutsky [30], who established that a utility function of the form (1.7) with u/>0, u~<0 

generates a strictly normal demand. A linear utility function clearly generates a normal 

(but not strictly normal) demand. 
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The following proposition was given in [48] for the single-valued case and subsequently 

generalized in [27]. 

Proposition 1.2. If ~(p, pw) is a GS-mapping on inIR+ n for any ~0 , then ~(p, I) 

is also a GS-mapping. Conversely, if ~(p, 6) is positive homogeneous of degree zero in 

(p, ~) and normal, then gross substitutability of ~(p, I) implies gross substitutability 

of ~(p, p~), and indecomposability of ~(p, I) implies indecomposability of ~(p, pw) for 

any ~>~0, w=/=0 

1.4. The need to study GS-mappings also arises in interseetoral balance models, which 

have obvious important applications. These models stimulated extensive study of matrices 

with nonnegative off-diagonal elements, the so-called Metzler matrices. The theory of these 

matrices was presented, e.g., in [20]. 

If ~(p) is a nondecreasing vector function and ~ER+ I , then ~p(p)~kp has the 

property of gross substitutability. Therefore the problem of finding the nonnegative eigen- 

vectors of a monotone operator in R ~" is closely related with finding the zeros of a GS- 

function (the vectors on which the function vanishes), These problems are typical of non- 

linear intersectorial balance models [i, 3, 4, 6, 7]. 

1.5. Examples of Equilibrium Models. In what follows, alongside the properties of GS- 

mappings, we will consider in an abstract form two relatively simple equilibrium models which 

have been studied by many authors (the value of these models in the theory of a planned 

economy is discussed, e.g., in [8, i]). 

Suppose that each of the m agents (consumers) is characterized by the objective function 

u~: R+~-+R ~ and the income function 6~:R~f~-+R+ I, k6M={1 ..... m} . Denote by ~h the mapping 

which associates with each pair p, 6k(p) the set of solutions of the problem (1.6) for u = u k, 

~=6k(p) Then the mapping ~h(p, 6h(p)) characterizes the dependence of the k-th agent 

demand on the prices p. Suppose that the supply vector s6R+ ~ is fixed. 

Definition 1.8. The collection of vectors (q, fk k@7~) is called an equilibrium if 

q~ n fkE~k(q ,~k(q))vk~7 ~ and ~ fk-----S . Here q is called the equilibrium price vector, 

and the tuple (fk k@7~) is called an equilibrium allocation of resources. 

If 6k(p)=pw ~ , where ~1~N~n , and S~-~w k , we obtain a pure exchange model [.20, 36]. 
k=1 

Denote this model by ~(~F) , where W~(~ ~,E@7~) is the collection of initial stocks. If 

6~(p)~ , then thecorrespondingconstruct is called a fixed income model, denoted by ~(~, 

S), where B=(~)@~+ m 

Consider the excess demand mapping 

(p) = ~ ~ (p, 6~ (p))-- s. (1. 8 ) 

Clea r ly  the s e t  of e q u i l i b r i u m  p r i ce s  co inc ides  with the  s e t  

3jo --  {p i 0 ~  (p)}. ( 1 . 9 )  

In what follows we invariably assume that the model satisfies the following two condi- 

tions. 

2018 



UI. Each objective function defined on R+ ~ is continuous, strictly quasiconcave,* 

and does not attain a maximum on R+ n 

U2. For any commodity i, there is a trader k whose objective function is strictly in- 

creasing in the i-th variable. 

From U2 it follows that the mapping ~(p) is not defined on the boundary of R+ n 

The structure of the set ~0 for a GS-mapping ~) will be discussed in the following 

sections. 

In more general equilibrium models [i0, 20, 36], supply is also a function of the 

prices. Many of the results remain valid in this case too. 

Note that if all the objective functions satisfy UI, then the excess demand in the model 

~i satisfies the identity 

which is known as the Walras law. 

the relationship 

pd=O Vd6~(p), Vp, (1 ,10)  

In  model ~ 2  the  Walras law does not  a p p l y ,  but  we have 

pd = ~_~ ~k-- ps VdE~ (p), Vp.. 
k = l  

(1.11) 

Note that the model ~2(B, s) can be regarded as a particular case of the model ~I(W) 

Indeed, for w~==~i~r ~kS, W~(~k, kE M) , the set of equilibria in ~I(W) coincides with the 

set of equilibriarin ~,2(B, s) if the prices in ~i are normalized by ps=~ k . The model 
k 

~2 is of independent interest, but it also plays an important auxiliary role in the study 

of the more complex model ~i. 

1.6. Let us now introduce certain assumptions which will be needed in what follows in 

applications to various mappings. 

AI. The mapping defined on intR+ n is convex-valued, closed, and maps any compact set 

from iDtR+L into a nonempty bounded set in the space R n 

A2. The mapping is positive homogeneous of degree ~. 

A3. If q is a zero of the mapping, and d = (d i) is included in the image set of p, 

d # 0, the condition p>q implies that mindi<O and the inequality p..<q implies that 
i 

m a x d i > 0  
i 

A4. The mapping satisfies the Walras identity 

pd = 0 vdG~ (p), vp. 

It is easily seen that A4 implies A3. Let U1 be true. Then the excess demand !~) in 

the model ~l satisfies all the assumptions AI-A4 (where A2 holds only for ~=0 ). The 

excess demand in ~2 has the properties A1 and A3, whereas A2 and A4 break down. 

1.7. In conclusion of this section, we give a theorem from [26] which establishes a 

relationship between GS- and AGS-mappings. 

*That is, u(tx+(l--t)g)~mi~{u(x), u(g)}vt~(O, I) , and strong inequality holds if u(x) # u(y). If 

u is concave (see footnote on p.2016), then it is also quasiconcave. 
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THEOREM 1.2. An (indecomposable) GS-mapping ~ satisfying A1 is an (indecomposable) 

AGS-mapping if and only if for any p and arbitrary elements d, d' from the set ~)(p) we have 

the equality pd = pd'. 

The justification of Theorem 1.2 in [26] is based on two lemmas, which will be useful 

in what follows. 

LEMMA i.i. Let V be a convex compact set in intR+ n and let the mapping ~ satisfy 

AI. Then there is a pair of vectors r, h such that r6V, h6~(r) and rh~uh vu6V 

To prove the lemma, it suffices to apply Kakitani's fixed point theorem to the direct 

p r o d u c t  ~ ( d )  X ~ ( P )  , where  ~(d)={p[p@V, pd==max~d} 
vEv 

Le t  p==(p~), q~(q~). The f o l l o w i n g  n o t a t i o n  w i l l  be used t h r o u g h o u t  t h e  r e s t  of  t he  

article: 

I f  a = ( a z ) G R  '~ 

portents 

rain {p, q}=(Pl),where ~ =rain{p, ,  q~}, 

max{p, q}=(/~),where p ~ = m a x  {p, qi}.  
JI(P, q)={iIP~< q~}, J2(P, q)={i]p~>q~}. 

(1.12) 

(i.13) 

and JcN=={I ..... n} , then alJ l is an n-dimensional vector with the com- 

i~J.  ( 1 . 14 )  

The f o l l o w i n g  r e s u l t  p r o v i d e s  an i m p o r t a n t  t o o l  f o r  t h e  i n v e s t i g a t i o n  o f  the  p r o p e r t i e s  

o f  GS-mappings and i s  o f t e n  used i n  the  s u b s e q u e n t  s e c t i o n s .  

LEMMA 1.2  (on C o m b i n a t i o n ) .  L e t  t h e  GS-mapping s a t i s f y  A1 and l e t  dE~(p) ,  

rain{p, q}, p=max{p, q}. Then there are vectors ~(p), a~(p) such that 

 <dI:ll+/[41,  >dI41+/Vll, 
where Jl=Jl(p, q), J2=J2(p, q) 

A p r o o f  ba sed  on Lemma 1 .1  w i l l  be found i n  [26 ] .  I t  i s  c l o s e  to  t h e  p r o o f  o f  Theorem 

2 in [28]. 

2. EQUILIBRIUM PRICE SETS 

2.1. Consider the mapping ~:p~2R n, PcR+ n and let 

~ 0 = { p  [ 06~ (p)}. ( 2 . 1 )  

The vectors from n ~ will be called the zeros of the mapping ~ or, if ~ is interpreted 

as excess demand, the equilibrium price vectors. In this section we give conditions for ~9 ~ 

to be nonempty and convex or to consist of a single element. We also consider the related 

question of the existence and the properties of the inverse mapping 

~ - ~ ( y ) = { p l y 6 ~ ( p ) }  ' gEy~Rn.  ( 2 . 2 )  

For a linear GS-function ~ with p_~+n, y--_~n, the necessary and sufficient condi- 

tions for the existence of ~ i are known (see, e.g., [20, p. 95]); these functions are 

specified by Metzler matrices [i0, p. 255]. 

Now let P~{PiP<P<~, ~(P)-=r where ~:Rn.--+Rn, ~ is nondecreasing. Assume 

that ~(fi)~0, @($)~0 Then P~05A-Q by the Birkhoff--Tarsky theorem (see, e.g., [21, p. 

53] and alternative versions in the appendix to [i]). The proposition remains valid for an 
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arbitrary continuous GS-function [79, 92]. For pEint R+ n it can be generalized to the multi- 

valued case using Lemmas i.i and 1.2. Let 

~+~_{pl ~(p)N ~+n ~ ~}, ~-__{p ] ~(p)N R_n% Q}. (2.3) 

THEOREM 2.1. Let the GS-mapping ~ satisfy A1 and @+~-__~0 . If pC@ +, SE@-, ><$ , 

then ~0~ and there is a vector rE@ ~ , >~r~$ 

Note that for AGS-mappings defined on P=intR. n , we always have ~+N~-~~ A close 

result is contained in [27]. 

2.2 Now suppose that ~) satisfies the Walras identity A4. If P~intR+n , then clearly 

~)+=~)-=~0 and the proposition of Theorem 2.1 is trivial. Note that on the entire R+n 

there is no continuous nonzero GS-function satisfying A4 (see, e.g., [20, p. 309]). A number 

of existence theorems of equilibrium prices for a continuous positive homogeneous GS-function 

satisfying A4 and defined on the cone P~R+ ~ (not necessarily convex) which does not contain 

the origin and is closed in the relative topology of R+ ~ are given in [20, Sec. 18.3] and 

in [59]. Certain conditions are assumed on the boundary of P. 

Let P=intR+ n and let ~ satisfy AI, A4. Then the existence of an equilibrium vector 

can be proved without gross substitutability by using the following natural boundary condi- 

tion (it was actually used in [20]): there are constants y>0 and e>0 such that, if 

IIpII~, T={i]pi~e}=ff=~ , then any vector dE~(p) has at least one positive component with 

an index from T. This proposition is easily derived from Lemma i.i. It is applicable to the 

model ~I(W) if UI, U2 hold and for any i, j = i, ..., n there is a trader with the i-th 

commodity whose objective function is strictly increasing in the j-th variable. 

Necessary and sufficient conditions for the existence of equilibrium are known only for 

linear exchange models [50]. So far it is not clear how to extend these conditions to the 

nonlinear case, even with gross substitutability. 

2.3. Let us now consider the uniqueness of the zero and the existence of the inverse 

mapping. First we focus on cases which are independent of A2 and A4. 

Assuming a differentiable GS-function ~Z) defined on a domain of the form P='{PI~<q<#} , 

Gale and Nikaido [51; 20, p. 365] derived necessary and sufficient conditions ensuring the 

existence of a nondecreasing inverse function: at any point from P, the Jacobian matrix ~)~ 

of the function ~ should satisfy the inequalities 

max a~b~ > 0 v a :  (a~) GRnand b : (b~)----~'a. (2 .4)  
i 

C o n d i t i o n s  g u a r a n t e e i n g  e x i s t e n c e  and u n i v a l e n e e  of  t h e  i n v e r s e  o f  a G S - f u n c t i o n ,  w i t h -  

o u t  a s s u m i n g  s m o o t h n e s s ,  were  g i v e n  i n  [ 7 8 - 8 0 ,  84,  8 9 ] .  The most  g e n e r a l  (and v e r y  s i m i l a r )  

r e s u l t s  were  i n d e p e n d e n t l y  d e r i v e d  by S a n d b e r g  [79] and Yun [ 8 9 ] .  I n  what  f o l l o w s  we w i l l  

p r o v e  a p r o p o s i t i o n  c l o s e  t o  Theorem 3 f rom [79] which  i s  a l s o  a p p l i c a b l e  to  t h e  m u l t i -  

valued case. 

Let us introduce another assumption, weaker than A4. 

A5. If dE~)(p),drE~)(p) for some p and d<d ~ , then d = d' 

For AGS-mappings (Definition 1.5), A.5 is satisfied automatically for positive p. 

Take a fixed set Y~R n 
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THEOREM 2.2. Suppose that the GS-mapping ~9 satisfies AI, A5, and the following condi- 

tion holds: 

(*) for any r6inIR+ n, yEF there are p, q, d, f such that p<r<q, dE~(p),fE~)(q), d~y~f 

Then a nonincreasing inverse mapping ~-i is defined on Y. It is single-valued if the 

following condition holds: 

(**) if d6~(p), fE~)(q), q>p, f>d , then q = p. 

If (**)does not hold for some p, q, d, f, and dEF or f EY , then ~)-i is not single- 

valued. 

The proof of Theorem 2.2 is based on the following lemma from [26]. 

LEMMA 2.1. If the GS-mapping ~ satisfies AI, then the set ~+ (see (2.3)) is closed 

under the operation max, and ~- is closed under the operation min. If A3 holds, then ~0 ~ 

is closed under max and min. 

Lemma 2.1 readily follows from combination Lemma 1.2. 

Proof of Theorem 2.2. By Theorem 2.1 the mapping ~(p)-- y has a zero for any yEY ; 

therefore ~-~ is defined. Let a, bEY, a<b, rE~)-i<a), vE~0-1(b) . Denote 

~=min{r, v}, p=max{r, v}, 5r'(p)=~)(p)--b. (2.5) 

Applying Lemma 2.1 to the mapping ~g'(p) , we find ~E~Z'(~), g<0 By assumption, there are 

vectors q, f such that fE~0(q), q~, f~b By Theorem 2.1, the set {plq<p~p} includes the 

vector v' such that 0E~'(v') ; therefore v'<r, v'E~-i(b) . We similarly find r'E~O-i(a), r~>a 

We have thus proved that ~0-1 is nondecreasing. 

Now suppose that r~)~i(b), vEo, L)-1(b), bEY, r=/=v Consider ~, p and ~-(p) as defined 

in (2.5). Applying Lemma 2.1 to ~-(p) , we obtain 8E~0(fi), ~E~), 8<b~ . But fi<p , 

therefore condition (**) does not hold. Conversely, suppose that (**) does not hold for some 

r, v, a, b, so thataE~)(r), bE~(v), v~r, v=~=r, b~a , and let, say, bEY By assumption, there 

are q, f such that fE~0(q), q<r, f>b . Therefore the function ~)(p)--b has a zero on the set 

{pIq<p<r} other than v, i.e., the mapping ~0 -i is not single-valued. Q.E.D. 

As an application of Theorem 2.2, consider the model ~2(B,s) (Subsec. 1.5) for s>0 , 

assuming that UI and U2 hold (Subsec. 1.5). Let Y=:{ylFT>--s} . In this case, Theorem 2.2 is 

not particularly useful to prove the existence of equilibrium, since (*) is not obvious. How- 

ever, the existence of equilibrium for any s>0 follows from the corresponding theorem (see 

Subsec. 2.2) for ~i(~7) for m~=(~,)-i~s , and therefore condition (*) holds. Conditions 
r 

A5 and (**) follows from budget equalities (see (i.ii)). Therefore, the equilibrium prices 

are unique and do not increase with the increase in s (more general results will be derived 

in Subsec. 4.3). 

2.4. Let the GS-function ~0 be defined on the entire R+ n and be continuous. A number 

of economic models [3, 6] and also a number of multivariable control problems [15, 16, 9] are 

reducible to problems of maximizing a certain nondecreasing function on ~+ or minimizing 

such a function on ~- . The solution of these problems is independent of the particular 

criterion, since the set ~- , if nonempty, includes a minimum point (i.e., a vector p* such 

that p*<pVpE~)- ), and the set ~)+ , if nonempty and bounded, includes a maximum point. 

This fact easily follows from the closure of ~)- under the operation min and the closure 
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of ~+ under max (see Lemma 2.1, which~ strictly speaking, applies to a mapping defined on 

intR+ n ). As noted in [3], the existence of a minimum point in ~- was first noted by E. B. 

Ershov. 

The minimum point of the set ~- satisfies the conditions pi~(p)=0, [=l,...,n The 

maximum point of ~9 § always reduces ~) to zero. Therefore Theorem 2.2 can be applied as a 

criterion to identify the maximum point. On the other hand, the following proposition, 

actually established in [3] (see also [9]), suggests yet another criterion for the uniqueness 

of the zero~ 

THEOREM 2.3. Let ~) be a continuous GS-function on R+ n with concave components, and 

~9(0)~0 If ~)- is nonempty, then the minimum point of the set ~)- is the unique zero 

of the function ~ and it coincides with the maximum point of the set ~)+ . 

Proof. Let p* be a minimum point. Gross substitutability and the condition !~)(0)>0 

imply that p*~0, ~9(p*)=0 If ~ has another zero, then p* is not a maximum point in 

~)+ Then there is pE~ +, p~P*, P--/=P* Take ~>0 so that q=p*--e(p--p*) ~0 From the 

concavity of ~3 is follows that ~(q)<0 But q~p*, q=/=p* , which contradicts the mini- 

mality of p*. 

2.5. If the GS-function is positive homogeneous of zero degree and satisfies the Walras 

identity A4, then the set of its zeros is convex. This result, due to McKenzie [64], is also 

given in [38] and in [i0, 20]. In [26] it is extended to the multivalued case and an arbi- 

trary degree of homogeneity. The proof of [26] is actually preserved when A4 is replaced 

with A3. 

THEOREM 2.4. If the GS-mapping ~ satisfies the assumptions AI-A3, then ~0 is convex. 

The proof follows immediately from Lemma 2.1 and the following geometric fact: a cone t 

in R+ n which is closed under max and min is convex [26]. 

Note that a positive homogeneous indecomposable GS-mapping has at most one zero (up to 

a scalar factor). This follows directly from the definitions. 

2.6. In conclusion of this section, let us prove an inequality which is very important 

in stability analysis of price adjustment processes (see Subsec. 6.4). For the single-valued 

case, it was proved in [35, 38]. It also implies convexity of ~)0 [38], although, unlike 

Theorem 2.4, this assumes the Walras identity. 

THEOREM 2.5. Let the GS-mapping ~ satisfy AI, A2, A4. If q~)0 and d~!~)(p) , then 

qd~O , a n d  i f  p~..~o , t h e n  q d > O  

P r o o f .  C o n s i d e r  t h e  p a r t i t i o n  ~(p ,q)  o f  t h e  c o o r d i n a t e  s e t  N = { 1 , . . . , n }  i n t o  c l a s s e s ,  

each with constant ratio Pi/qi: 

Q(P, q)={N1 . . . . .  Nt . . . . .  N,}. N~-=(ilp,/q,=3,,}, y,>y,+~. 

Let p~=(pi~)=min{p, ~kq}, H~={ilp~<Ykq~} = UN~ Since 
t>k 

Lemma 1.2, there are vectors gk such that 

g ~  (p), g~ ~< d IH~I. 

tThe set K is a cone if /f=~KV~>0 

necessarily so. 

0EN(vkq) , then by combination 

(2.6) 

The zero vector (the origin) may belong to K, but not 
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Since p~lHq=plH~], the Walras law and (2.6)  imply t h a t  

O=p~g~ < /:d IHq =pd I tl N d. 
l>[e 

If ~ ,=pd lN  d , then (2.7) leads to the inequalities 

Therefore 

(2.7)  

Z ~ > 0 ,  k--1 . . . . .  l - -1.  (2.8) 

1 l l 

f=[ f=2 t~l 

i.e., the first proposition of the theorem is true. 

Now let qd = 0. 

Therefore, by (2.6), 

(2.9) 

Since pZ=vzq 

C l e a r l y ,  p~=max{p ~<, pk}, /~k={i ip/~+1%pk}= UN t 
t ~ k  

Since OG~(p k+~) , Lemma 1.2 impl i e s  t ha t  t h e r e  is  a v e c t o r  f ~ ( p k ) ,  f>~O 

In this case, (2 .9)  implies that (2.8), (2.7) hold as equalities. 

N(pk)gg< g"~=dIUN~I, ~ = 1  . . . . .  l - -1 .  (2.10)  
[ > k  

, then ptG~}(' We w i l l  prove tha t  i f  p k + ~ o  , then a l so  p~$o ,  1-~k%[. 

From (2.10) we have that g~[~q=0 

By the Walras law, 

Q.E.D. 

f = 0, i.e., pteG~0 

By induction p16~~ 

3. 

3.1. Let 

But since / ~ p  , this completes the proof. 

EQUILIBRIUM PRICES AND EQUILIBRIUM ALLOCATIONS 

�9 ~ ( p ) - - - E ~ ( p ) ,  M={1,  2 . . . . .  m}. (3 .1)  
k6m 

In the model ~II(W) (see subsec. 1.5) and in a number of ether models, the mapping ~k 

in interpreted as the excess demand of the k-th agent. 

Let 

E = { ( p ,  d", kcM)]dkE~,O~(p), Z d ~ = O } ,  
k6M J 

D = { ( d <  k6M) l ~p:dkC~k (p), ~Mdt'=O}. 

E i s  the " e q u i l i b r i u m  s e t , "  9 ~ (see (2 .1 ) )  i s  i n t e r p r e t e d  as the  s e t  of  e q u i l i b r i u m  p r i c e  

vectors, and D is defined as the set of equilibrium allocations of the resources. 

Let E=/=~ The following proposition was actually proved in [26]. 

THEOREM 3.1. Let each GS-mapping ~)~ satisfy A1 and A2 for ~=0, and let A3 hold 
for their sum ~) . Then 

E=~D~ D, (3.2)  

and the sets ~)0 and D are convex. 

If ~)h are single-valued, then by (3.2) D includes at most one element. 

A4 is assumed in [26], but the proof remains valid under the weaker assumption A3. As 

a result, Theorem 3.1 implies, say, convexity of p-optimal allocations, which is proved in 

[25, Theorem 2] by a different method. 
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Theorem 3.1 is particularly useful for pure exchange models (see Corollary 3.1). 

3.2. Consider the uniqueness of the equilibrium in the models ~i (Subsec. 1.5). If 

the objective functions in ~I are linear, then, as shown by Gale [50], all the equilibria 

are "equally profitable" for each trader. In order to generalize this result, we need the 

following definition [50, 26]. 

Definition 3.1. Two equilibria (see Definition 1.8) (p, d ~, kEA4) and (q, [~, keM) are 

equivalent if u~(d ~) =uh(p)VkEi~ If all the equilibria are equivalent, we say that we have 

a preference-unique equilibrium. 

The existence of nonequivalent equilibria involves substantial difficulties in the 

application of equilibrium models as a tool of economic analysis. It is therefore important 

to establish the equivalence conditions. Equality (3.2)is clearly one of such conditions. 

Therefore, Theorem 3.1 leads to the following generalization of the proposition from [50]. 

COROLLARY 3.1 [26]. Let each objective function in the model F~I(W) satisfy U1 and 

let U2 hold (Subsec. 1.5). If the individual excess 

~ ( p )  = ~ ( p ,  pF~)-~w ~ (3 .3 )  

i s  a GS-mapping f o r  any k,  t h e n  t h e  e q u i l i b r i u m  i s  p r e f e r e n c e - u n i q u e .  

I t  i s  shown in  [26] t h a t ,  g i v e n  p r o p e r t i e s  UK and U2, t h e  e q u a l i t y  ( 3 . 2 )  i s  n e c e s s a r y  

f o r  the  e q u i v a l e n c e  of  e q u i l i b r i a  i n  ~ll �9 Th i s  p r o p o s i t i o n ,  no t  u s i n g  g r o s s  s u b s t i t u t -  

a b i l i t y ,  is also valid for an essentially wider class of models (which includes, in partic- 

ular, ~2(B, s) ). 

Let us introduce some assumptions relating to the individual demand ~(p, I) for unit 

income. 

SI. ~h(p, I) satisfies AI, ~?~(p, I)cR+~Vp. 

S 2 . ~ ( p ,  ~)---~a(p/~,-1) y ~ > 0 ;  ~a(p, 0)={0} 

$3. pca=l Vp and Vca6~(p, 1) 

$4. ~h(p, 1) i s  a GS-mapping. 

$5. ~ ( p ,  1) i s  normal  ( see  D e f i n i t i o n  1 . 7 ) .  

Note  t h a t  $2,  $4,  and $5 imply  t h e  G S - p r o p e r t y  f o r  ( 3 . 3 )  ( P r o p o s i t i o n  1 . 2 ) .  

P r o p e r t i e s  S1-$3 f o l l o w  from a s s u m p t i o n  UK ( S u b s e c .  1 . 5 )  f o r  t h e  i n d i v i d u a l  u t i l i t y  f u n c -  

tions. It can be shown that the conditions of Theorem l.l are sufficient for SI-S5. 

We recall that the equilibrium price vector in the model ~i(I[/), W=(~v~ k67~) , is the 

zero of the sum of mappings (3.3), and in the model ~2(B, s) , where B=(~k, k~7~I) , it is the 
17Z 

zero of the mapping ~1~(p, ~k)-=s �9 Only positive prices are assumed. 

The following results are only based on the above-listed properties of the individual 

demand functions; it is not required that these functions are generated by a maximization 

problem. 

Sufficient conditions for uniqueness of equilibrium prices were derived in [45] for a 

linear exchange model.* A more general result is given in [31]. In order to present it, 

we need the following definilion. 

�9 In [45] t'hese conditions are erroneously declared to be also necessary. A counterexample 

is given in [31, p. 131~ 
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Definition 3.2 [31]. We say that the model ~I(W) is decomposable into ~ submodels 

~i(Wi) if i) VTt=(~ k, k@f~t) , where the sets fi~t, ~-I ..... I constitute a partition of 

the trader set M; 2) ~=0 for k~M~, i~IV~ , where N~, t=l ..... f constitute a partition 

of the set of resources N+~-~i ~i~>O~ ; 3)the collection (c ~, ~@~I)of the demand vec- 
[ ) 

tors c k of the traders k is an equilibrium allocation iz~ the model ~(W) if and only if 

the collections (c~,~Mt) are equilibrium allocations in the models ~l(~Y~) for all t = i, 

2, ..., ~. 

We assume that the model always has the trivial decomposition for 7 = i. If there are 

no other decompositions, the model is called indecomposable. 

In a decomposable model, the traders from different groups M t clearly possess different 

kinds of resources and, in any equilibrium, exchange is only conducted among traders of the 

same group. Therefore ci k = 0 for k~M~, i~N~ for any equilibrium allocation (c~,k~M) of the 

model ~I(W) 
I f  P,(W), P~(Wt) 

by Definition 3.2 

are equilibrium price sets in ~0~I(W) and ~1(Wt) , respectively, then 

l 

P~ (W)---- ['l Pl (Wt). ( 3.4 ) 
t = l  

In the following theorems we use the notation from (1.14). 

THEOREM 3.2 [31]. Let conditions SI-$5 be true, PI(W)=/=~ 

tion of the model ~I(W) into I submodels and vectors at=(a~t)ER+ ~, t=l ..... l 

a~>O for i~N~ and 

1 

P l (W): n {P I P > ~at,  P [Nt] = ~.a t [NtI, ;~OntR+~}. (3.5) 

The proof essentially uses the theorem of the structure of the equilibrium set in the 

model ~2 with fixed income {see Subsec. 3.3, Theorem 3.5) and the construction described 

in Sec. 5 (see the properties of the function ~ in Subsec. 5.3). 

Suppose that the partition N t of the resource set corresponds to the decomposition of 

the model ~I(W) introduced in Theorem 3.2. Then, as claimed by the theorem, the equilibrium 

price proportions on each set N t are uniquely determined. The next theorem follows directly 

from Theorem 3.2. 

THEOREM 3.3 [31]. Let conditions SI-$5 be true and let Pt(W)=J=~ If the model ~I(W) 

is indecomposable, then the equilibrium prices are unique (up to a scalar factor) on the set 

of nonzero resources of the model, i.e., for any p, qGPl(W) there isanumber %>0 such that 

In a decomposable model, the matrix with the columns w k is reduced to block-diagonal 

form. Therefore, either of the following conditions is sufficient for uniqueness of the 

equilibrium prices: i) NkEYP/, ~>0 ; 2) Vi, j, isAj, N~6M , ~vik~vi~>0 . Each of the following 

conditions ensures uniqueness of the equilibrium prices on N+: 3) ~i, ~>0 vkCM ; 4) 

VkEM, rEM, k--/=r, ~i, ~fl~vF>O 

Then there are a decomposi- 

, such that 
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In cases then conditions 1)-4) do not hold, the indecomposability of the model can be 

checked using analogous conditions in terms of equilibrium allocations. Note that unique 

equilibrium prices are also possible in decomposable models. 

A corresponding example from [31] includes three commodities and three traders with the 

objective functions Ul(X)=U2(x)=xl +x2+x3, u3(x)=xl+x2+2~xa and initial stocks ~I=(I,0, 0), 

m 2=(0, l, 0), ~=(0, 0, a) , where a>0 

It is easily seen that for a~l the price vectors from the set {plp3~p1=p2>~.p3~ are 

equilibrium ]prices. Since traders 1 and 2 may exchange their commodities, the only possible 

decomposition is that with Ml={], 2}, M2={3} �9 For a<l the model is decomposable, since 

the prices are not unique. It is also decomposable for a=l . Using (3.4), we can easily 

check that there are no other equilibrium prices. Thus, for a=1 , the equilibrium price 

proportions are uniquely determined. 

For a>] , the model is indecomposable, which is easily seen by constructing an equi- 

librium allocation* with the vector c3>0 

3.3. Now let us consider a model with fixed incomes ~2(B, s). As we have noted above, 

given the conditions U1 and U2 ( Subset. 1.5), the existence of equilibrium in ~2(B, s) for 

B>0, s>0 follows from well-known theorems (see, e.g., [20]). If the incomes of some traders 

or the stocks of some commodities may take zero values, the following conditional existence 

theorem is useful. 

Let 

where B =(13k)ER+ m 

P2(B, s) �9 

THEOREM 3,4 [27]. 

Z(B)={kI~=O}, 

The set of equilibrium prices in the model ~2(B, s) will be denoted by 

Let assumptions SI-$5 be true. If 

Z(B*)~Z(B)~Z(B) ,  s* > S > S ,  

and P2(B*, s*)@ ~ ,  P 2 ( ~ ,  s )5~ Q , then also P2(B, s)~= 

The p r o o f  i s  b a s e d  on T h e o r e m  2 . 1 .  

I n  c o n c l u s i o n  o f  t h i s  s e c t i o n ,  we p r e s e n t  a t h e o r e m  on t h e  s t r u c t u r e  o f  t h e  e q u i l i b r i u m  

set in the model ~2(B, s) 

THEOREM 3.5. Let conditions SI-$4 hold in the model ~2(B, s) Then the equilibrium 

set E (if it is nonempty) is the direct product of the convex set of equilibrium price vectors 

P and the convex set of equilibrium allocations C, 

E=P•  

There is also a vector a=(a~)~R+" such that ai>0 for i~N+={i~N]si>O} and 

P={p]p>a, p,=a~ ~r i~N+}. 

U n d e r  t h e  a s s u m p t i o n s  U1 and  U2, t h i s , t h e o r e m  was p r o v e d  i n  [ 2 6 ] ,  w h e r e  a s o m e w h a t  more  

general model (including production) was considered. In this case, $4 can be replaced with 

*In [31, p. 19] it is erroneously claimed that there are no equilibria for l<a<3 In fact 

we have the following equilibrfum in this case: p1=p2=p3, c1=(l--=,O, ~), c==(0, I--!~,~),c3=(~,~,I) , 

where ~>0,~>0, a+~=a--I 
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gross substitutability of the joint demand. A proof of Theorem 3.5 not relying on the ex- 

istence of objective functions generating the individual demand was derived in [31]. 

4. COMPARISON OF EQUILIBRIA 

4.1. Comparison of equilibria, or comparative statics, is a subdivision of economic 

equilibrium theory focusing on the response of equilibrium economic systems to external 

forces. A typical problem can be stated in the following terms. Consider a system in 

equilibrium, with excess demand which is positive homogeneous of degree zero and satisfies 

the Walras identity (Subsec. 1.6). One of the goods , say the n-th, is selected as the 

numeraire and its price is fixed. Suppose that as a result of changes in the objective 

functions, the consumer incomes, or the technology, the excess demand for the i-th good 

increased while the excess demand for the numeraire decreased (this is a so-called binary 

change, the simplest type of disturbance consistent with the Walras identity). How do the 

equilibrium prices change? 

This topic was posed by Hicks ~56], who assumed that, if all the goods are substitutes, 

then as a result of such a disturbance i) the price of the i-th good increases; 2) all the 

other prices do not decrease; 3) the proportionate increase in any of the prices does not 

exceed that in the price of the i-th good. These three assertions are often referred to as 

Hicksian laws. They may appear to be "economically obvious," yet their proof requires very 

strong assumptions. Local results in the smooth case were obtained by Mosak [68] (see also 

[46]). The general case of binary changes for single-valued excess return satisfying g.s. 

(before and after the disturbance) and some additional assumptions was studied by Morishima 

[66, 19]. He proves the second and the third Hicksian laws with the aid of the indecomposa- 

bility condition. These and some additional results in comparative statics are also given 

in [36, 21]. 

In what follows we consider the properties of GS-mappings which in certain cases allow 

predicting the signs of the changes in the equilibrium prices for various disturbances. We 

will also prove a number of additional propositions for the multivalued case, in particular 

the co-called LeChatelier-Samuelson principle [76, 77, 19]. 

4.2. The following theorem (a generalization of Theorem 1 [27]) implies the first 

Hicksian law, and in the case of unique equilibrium prices, also the second and the third 

laws. 

Recall that ~9 ~ denotes the set of zeros of the mapping ~ (see (2.1)). 

THEOREM 4.1. Let the GS-mapping ~ satisfy AI-A3, d=(d~)6~(p), d~0 and q=(ql)6~ ~ 

Then there are indexes j, s and a vector q*=(q~*)6~) ~ such that dj<0, d~>0 and we have 

qj*/pj~q~*/p~q~*/p~ ~r all i ( 4 . 1 )  

q~*=q~ ~r all i such that di # 0 ( 4 . 2 )  

e r o o f .  S i n c e  ~ i s  homogeneous ,  A3 i m p l i e s  t h a t  N-=ff [& <0}-# Q, N+={ild,>O}~=G. 

Let 

;L=maxp~/q~, q'--=-max{~.q, p}, ~=minp~/q~, q " = m i n { p ,  ltq]. 
i~N- iCN+ 
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C l e a r l y ,  q/=%qi=PJ, qs"- -Ps~qs  f o r  some j~A?-, s@N + S i n c e  0@~(s , t h e n  by 

Lemma 1 . 2 ,  u s i n g  t h e  d e f i n i t i o n  o f  ~, t h e r e  i s  f ~ ( q l )  such  t h a t  f>dlIl>O, l={i ls  

By A3, f = 0 and t h e r e f o r e  d i l l = 0  . T h u s ,  

q'~O pi.~<s ~r didO. 

We similarly find that 

q"E~ ~ P~ > ~qi = qi" ~r dt ~ O. 

By Lemma 2.1, $=max{q, s q*=min{~ ~-~q,}~o . Clearly, (4.2) holds. It is easily 

checked that V-Ip~q*~h-lp Q.E.D. 

COROLLARY 4.1. If under the conditions of Theorem 4.1 p ~ 0  , then qj/pj<qs/Ps for 

some j, s such that dj<0, ds>0 

The Hicksian laws follow from Theorem 4.1 if we assume that ~g) is the perturbed excess 

demand, and p are the old equilibrium prices; the properties of the original excess demand are 

not used directly. Actually, however, they determine the class of disturbances under which 

satisfies the conditions of Theorem 4.1. 

Theorem 4.1 relies on condition A3, which is weaker than the Walras identity and is 

applicable to arbitrary demand disturbances (and not only to binary disturbances). This is 

essential in the analysis of price adjustment (see Sec. 6) and in the proof of coalition 

stability of equilibria (Sec. 5). 

Morishima [66, 19] proved the second and third Hicksian laws in strong form; i.e., as 

a result of an increase in the excess demand for the n-th good (the numeraire), all the 

equilibrium prices (except the n-th) strictly increase and the proportionate increase in the 

price of the i-th good is higher than that in any other price. Morishima assumes that the 

excess demand is a continuous GS-function satisfying A2, A4 and additionally the strong in- 

decomposability condition: 

If p<p', p=/:p' and the set l={i]p~=p/} includes at least two elements, then there 

are j, S~I such that 

~ j  (P) ~ ,  (p') ,  ~ (P) ~ (p')'. 

Opoitsev [21, p. 72] proves the third Hicksian law in strong form using a somewhat dif- 

ferent condition on the function ~(p)=(~(p)) , which also guarantees uniqueness of the 

equilibrium prices : 

~g)~(p) decreases in p~Vi and increases in p~Vi~n. 

Some of these results follow from Theorems 4.2 and 4.3 (Subsec~ 4.3). 

4.3. New consider the case when the changes in the excess demand for all the goods have 

the same sign. This case is impossible if the Walras law is assumed to hold, but it is of 

definite interest for models of type ~2 

THEOREM 4.2 [29]. Let the GS-mapping ~ satisfy AI, A3 and let q6~9 ~ . Ifd=(d~)6!g)(p), 

d~0 , then max {p, q}6~ ~ Moreover, q~>p~ for d~>0, and if ~ is indecomposable and 

d # 0, then q>p From the condition d<0 it follows that ~iin{p, q}6~ ~ and q~<p~ for 

d{<0 , and if ~ is indeeomposable and d # 0, then q<p . 
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Proof. By combination Lemma 1.2, for q~---max{p, q} there is a vector ~6~($) such that 

a>/d[[l>~0, f~{iip~>~qi } A3 implies that a:~0 , so that dill=0 Thus, $~0 and 

qi>Pi for d~>0 For an indecomposable ~ , the relations q>p, d~=0, d>O imply 

q>p , but then q>p . The rest of the theorem is proved along the same lines. 

The following proposition sharpens Theorem 4.2 under the additional assumptions of nor- 

mality and strict normality of the excess demand (see Definition 1.7). 

THEOREM 4.3. Let the GS-mapping ~ satisfy AI, A3, be normal, and ~ 0 ~  . If 

d6~)(p), d>.~O, N+={i[di>O}~/=f3 , then for some q~0 we have 

q=/=p, l~q~,p~<maxqt/p~vi. (4.3) 
t~N+ 

If in addition ~ is strictly normal, then (4.3) holds for any qE~o , and 

q~/p~ <maxqdpt Vi~N +. (4.4) 
t~N+ 

Similarly, if d6~(p), d<0, N-~{i[d~<O}=/=~ , then for some qG~ ~ we have 

q=bP, l>~qdp~>~minqt/Pt vi. (4.5) 
t~N- 

In case of strict normality, (4.5) holds for any qE~ 0 , and the right inequality is strict 

viCN - 

Proof. Consider the case d>0, N+@Q Then by Theorem 4.2 there is v6~ 0, ,>/p, 

~=maxvdpt>I Clearly, (4.3) holds for q----min{~p, v} By Lemma 1.2, using normality 
i~N+ 

and the definition of ~ , there is a vector aG~(q) such that -a~f[ l ]~d[I]~O,  f~Y~(~p), 

I--_{iI~p~<vi} By A3, ~=0 , i.e. , q~0 

Now suppose that ~ is strictly normal, q is an arbitrary vector from ~0 . If the 

inequality p<q does not hold, then by Theorem 4.2 a----mini~N+{qdp~}<l Then ~p~q, 

f-~{i[~p~q~}~=~ and there is a vector g~(~p), g>d>~O �9 Since this contradicts the 

GS-property, we have p~q 

If (4.4) does not hold, then 9==qr/Pr~q~/P~ for some rr + and all i. Since 

~> 1 (by Theorem 4.2), then by strict normality there is k~](~,-~q), 1~>0 . But this 

contradicts the GS-property, since p>~-~q, U--{ilp~----i-~q~}@f~ and [(]N+~J (by Theorem 

4.2). Thus, (4.4) holds and this completes the first part of the proof. For the case d~<0 , 

N-@~ , the proof is entirely analogous. 

Let the perturbed demand ~) satisfy the conditions of Theorem 4.3, and in the initial 

equilibrium p only the first component of the vector d6~)(p) is nonzero and positive. Also 

assume that the new vector of equilibrium prices is unique. Then by Theorem 4.3, the prices 

of all the commodities do not decrease, and the relative increase of the first price is 

maximal; with strict normality, the proportionate increase of the first price exceeds that 

of any other price. 

Let us now consider the behavior of the equilibrium prices in the model ~(B, s) (see 

3ubsec. 1.5) with changing incomes and supply. The proof of the following proposition is 

ased on Theorem 4.2. 

As before, we use P~(B, s) to denote the set of equilibrium prices in ~(B, s). 
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THEOREM 4.4. Suppose that conditions SI-S5 hold, and 

B > B', s < s', q ~  (q~)GP2 (B, s), q' ~ (q/)EP2 (B', s'). 

Then qi~qi' for any i such that si~0 Moreover, let B ~ B' and suppose that at least one 

of the following conditions holds: 

(a) the demand function of some trader k such that ~>~h' is strictly normal; 

(b) the demand function of some trader k with positive income ~k>0 is indecomposable. 

Then q ~ q '  

Proof. If ~(P) is the excess demand in the model ~2(B,s) , then, by normality 

of the traders, there is f~@(q'), f~O Since $~max{q,q'}~P2(B,s) by Theorem 4.2, we 
m 

have q s ~ - - ~ k = $ s  Therefore qi=q~ for s , > O ,  i.e., q i > q /  �9 
k =  I 

If B ~ B', then f # 0. Under condition (a), the vector f may be chosen strictly posi- 

tive. Therefore the second proposition of the theorem follows from Theorem 4.2. Q.E.D. 

COROLLARY 4.2. If q,q'~P2(B,s) and si>O , then qi~ql r 

Note that propositions close to Theorem 4.4 are given in [32] (for the single-valued 

case) and in [27]. 

Remark. Suppose that the GS-function ~(p)~(~i(p)) is defined and continuous on 

in~§ ~ , satisfies A2, A4, and Morishima's strong indecomposability condition [19] (see 

Subsec. 4.2). Then Theorem 4.2 implies the second Hicksian law in strong form. Indeed, let 

the price of the n-th good (the numeraire) be fixed. Consider the function ~(p) with 

(n -- i) components ~(p)=~(p), i=l ..... n-- 1. By the Walras law, the functions ~(p) and 

~(p) have the same set of zeros (up to a scalar factor). Furthermore, ~(p) may be 

regarded as defined on ictUS -I ; it is easily seen to satisfy condition A3, and it is also 

normal and has the g.s. property. Strong indecomposability of ~(p) implies indecompos- 

ability of ~(p) Thus, Theorem 4.2 applies to ~ and implies the strong form of the 

Hicksian law for a system with excess demand ~ . 

Also note that if the GS-function ~(p) satisfies A2 and A4, then Opoitsev's addi- 

tional condition [21] (see Subsec. 4.2) leads to strict normality of ~(p) , whence by 

Theorem 4.3 we conclude that the strong form of the third Hicksian law is valid for ~(p) . 

4.4. Suppose that in an equilibrium system the demand for the first good increased 

(due to a decrease in the demand for the n-th good, the numeraire). Let the prices of the 

goods from the set L, Lgn , be fixed and assume that there are prices equating demand and 

supply for all the goods f~L ; for the goods from L the equilibrium is sustained by "ex- 

ternal deliveries." By a known theorem of comparative statics, often called the Le 

Chatelier--Samuelson principle, expansion of the set L (under certain assumptions on the 

demand function) cannot increase the difference between the prices of the first good in the 

new and the old equilibrium states. The increase of the first price is maximized if all 

the prices (except the n-th price) are "elastic" and minimized if they are all fixed. If 

in this process the expansion of the set L is associated with a strict decrease of the first 

price, we have a strong form of the Le Chatelier--Samuelson principle. 

The extension of the Le Chatelier principle to economic systems is due to Samuelson 

[75, 77]. He considered two types of models. In the first case, the model is described by 
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an extremal problem, and in the second case the excess demand GS-function is directly speci- 

fied. The formulation of the principle is essentially different for the two cases. The 

first case was developed in [60, 61, 88] and is not considered here. 

Under g.s., the formulation of the principle includes comparison of the increments of 

all the free prices, and not only the prices of the commodity the demand for which changed; 

the qualitative behavior of all the free equilibrium prices is the same. 

Samuelson [77] sketched a proof of the strong form principle for smooth demand func- 

tions and strict g.s. Morishima [19, p. 25] relaxed the smoothness assumption. In order to 

obtain the strong form of the theorem, he used the strict g.s. condition. The Le Chatelier-- 

Samuelson principle was also proved in [21, p. 73] under intermediate assumptions between 

g.s. and strict g.s. 

All the above-mentioned authors assume single-valued excess demand; in [19, 21] it is 

additionally postulated that the demand is positive homogeneous of zero degree and that the 

Walras identity holds. In what follows the Le Chatelier-Samuelson principle is proved for 

the multivalued case under the following additional assumption. 

A6. F o r  any p ,  q ,  d ,  f s u c h  t h a t  d ~ ( p ) ,  f~)(q)  p<q , we h a v e  pd>~qf 

Clearly, A4 implies A6. But A6 is satisfied also in fixed income models ~R2 , for 

which the Walras identity does not hold. 

Let p~intR+~ and KeN= {I .... , n}. Denote 

Q g { K ,  p) ----{qEint R§ = p [ N \ K ] ,  adG~(q):d [K] ----- 0}. ( 4 . 6 )  

Vectors from Q~ (K, p) will be called partial equilibrium prices (for commodities from 

K, on condition that the prices of the commodities from L = N~K are fixed at the level Pi)" 

THEOREM 4.5 (Le Chatelier~Samuelson Principle). Let the GS-mapping ~ satisfy AI, A6 

and consider a given vector p and given sets Kt§ *=1,2 ..... a" such that Q@(Kt, p)~Q �9 

If dCfO(p), d[Kll>~0 , then there are vectors qt~Q@(Kt, p) such that p.~<qt+~<ql . If d[K~l<0 , 
then for some ptfQ~(K,, p) we have pt<pt+l<p . 

The proof of Theorem 4.5 requires a detailed study of partial equilibrium, which is the 

subject of the next subsection. As a byproduct, we will derive the conditions of existence 

and uniqueness of partial equilibrium prices and thus sharpen the proposition of Theorem 4.5. 

4.5 We start by enumerating some important properties of partial equilibrium. 

THEOREM 4.6. Let the GS-mapping ~ satisfy AI, A6, /~N . Then for Q@(K,p)@O the 

following propositions are true : 

i) QjO(K,P) is closed under the operations max and min; 

2) if q, q'~.Q~(K, p) and dE~J(q), d l K ] = 0  , then df i~(q ' )  ; 

3) if ~ is indecomposable and K ~ N, then Q~9(K,p) includes one vector only; 

4) i f  qfiQ..q)(K,p), d~$O(p) and d lK]~<0.  , t h e n  min {q, p} ff_Qe~ (K, p), q~<p~ f o r  di<O ; 
5) i f  q~Q~(K,p), dfi$O(p), dIKI>0 , t h e n  max{q,p}~.Q~(,K,p),q,>p, f o r  & > 0  ; 

6) i f  q~.Q~(K,p), q'~.Q~(K',p), K ' ~ K ,  t h e n  min{q,q'},~.Q~(K',p) f o r  q>p  and max{q,q '}  

ff.Q~(K', p) for q<p 

The propositions of this theorem are simple corollaries of the following technical lemma. 

LEMMA 4.1. Let the GS-mapping ~ satisfy AI, A6 and let fE3J(q), fIK]~0 for /~/, 

L = N \ K  �9 Then if 
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(4.7) 
(p), d I '1 < O, p [El > q ILl, 

we have f C ~ ( ~ ,  where q - - m i n { p , q } ,  and qi~Pi whenever di<O �9 If 

(p'), d' IK] > 0, p' ILl < q ILl, (4.8) 

then f ~ ( ~  , where q--max{p',  q} , and qi>P'i whenever di>O 

P r o o f .  By combinat ion Lemma 1 .2 ,  t h e r e  i s  g Q ~ )  such t ha t  

g..<d[Id+fllJ, I~{ilp~<q~}, I 2 - - N \ I v  

By (4.7), d[ll]<f[ll]=O , i.e., q~[ If g 4 f, then ~6<~[=q~, which contradicts A6. 

Therefore g=f, d[ll]=0 , whence follows the proposition of the lemma for the case (4.7). 

The second proposition is similarly proved. Q.E.D. 

Proof of Theorem 4,6. Propositions i. 4, and 5 of Theorem 4.6 are obvious by Lemma 4.1. 

Proposition 2 follows from Lemma 4.1 since q'=max{q', ~} , where ~=max{q' q}. Proposition 

3 follows from the definition of an indecomposable GS-mapping using propositions 1 and 2 of 

the theorem. Proposition 6 is easily checked by applying Lemma 4.1. Q.E.D. 

Now using properties 4-6 of partial equilibrium, we can easily prove the Le Chatelier-- 

Samuelson principle. 

Proof of Theorem 4.5. For dl/i'j~0 , proposition 5 of Theorem 4.6 indicates that there 

are vectors ~tEQ~(/Ct, p) such that ~t~p Let q~1 and construct qt+1._---min{qt, vt+I} By 

proposition 6 of Theorem 4,6, qt+1@Q~(/C~+~,p) Clearly, qt~qt+1>p ~ The first proposition 

is thus proved. The proof of the second proposition follows the same lines. Q.E.D. 

The following theorem gives conditions for the existence of partial equilibrium. 

Theorem 4.7. Let the GS-mapping ~) satisfy AI, A5. If for given fi, K there exist 

vectors p, q~, d, f such that 

p<><q, p~<q~ ~r icK, (4 .9)  

de (p), a l X l > o ,  Y I K l < O ,  (4.1o) 

and then there is a vector r such that 

p..<r..<q, rEQ~ (K,p). (4.11) 

The proof is based on Lemmas i.i and 1.2 (it is not given here). 

Under the additional assumption of normality, Theorem 4.7 implies that nonemptiness of 

~0 leads to existence of partial equilibrium with arbitrarily fixed prices of an arbitrary 

proper subset of goods, since for any ~ there are p, q, d, f satisfying (4.9) and (4.10) in 

this case, 

5. COALITION STABILITY OF ECONOMIC EQUILIBRIUM 

5.1. Fairly recently, Gale [49] and then Aumann and Peleg [40] established that an ex- 

change equilibrium may be unstable in a certain sense. Their analysis is conveniently inter- 

preted in terms of international trade (trade between countries or economic regions). 

Suppose that in each region there are several firms which exchange goods among them- 

selves and with other firms at equilibrium prices. Suppose that the firms in the first 

region redistributed their initial stocks and continue exchange transactions within the frame- 

work of the entire system. Given the new allocation of the initial stocks, the old prices no 

longer equate demand and supply. Suppose that price adjustment leads to a new equilibrium. 
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Is it possible that the firms in the first region benefit from the adjustment compared with 

the original state? Note that according to the core theory (see, e.g., [20, p. 285]), they 

can gain only by trading with "foreign" firms, some of which must lose. 

An affirmative answer to this question indicates that the initial equilibrium is un- 

stable under redistribution of the initial stocks. Examples of instability in this sense 

were demonstrated in [49, 40]. In [54] it was shown that "the majority" of pure exchange 

models are unstable and therefore stability must be ensured by very special conditions. Suf- 

ficient conditions of stability were derived in [27]. The corresponding result directly 

using the notion of GS-mapping is formulated below in a slightly generalized form. 

5.2. Consider the model ~,(W), W=(w k, k6M), w~6R+ ~ A coalition is an arbitrary non- 

empty subset of consumers ~ M  

Definition 5.1. The allocation of goods (~,k@M) is called ]~-admissible in the model 

~I(W) if it is an equilibrium allocation in the model ~II(W ) for some ~y=(~k k~M) such 

that ~nfiR+ n, 

X X X (5.1) 
~G M kGm k ~  kE~ 

By (5.1), a coalition may not only redistribute the initial resources between its members, 

but also destroy them partially or completely and transfer them to traders outside the coali- 

tion. Note that it is possible to gain from partial destruction of the stocks (a phenomenon 

observed in practice in capitalistic firms), as demonstrated by an example in [40]. The case 

when a firm can benefit by free transfer of part of the resources to a partner was studied by 

Balasko [41] in a two-commodity, two-trader model. 

Definition 5.2. Let (p, c k,k~M) be an equilibrium in the model ~II(W ) . This equili- 

brium is weakly coalition stable if for any coalition M and any M-admissible allocation 

(Ck,~(~M) there is an index rE]~ such that ltr(Cr)~ttr(C r) If either ttr(Cr)>ttr(C ~) for some 

r@A$ or u~(c~)>~uk~ I~) for all kEA~ , the equilibrium is called coalition stable. 

Pareto optimality of equilibrium implies that preference uniqueness (Definition 3.1) is 

a necessary condition of weak coalition stability. 

THEOREM 5.1. Let assumptions SI-$5 (Subsec. 3.2) hold. Then any equilibrium in ~I(W) 

is weakly coalition stable. If, moreover, (A) all the mappings ~Fk(p, i) are strictly normal 

or (B) ~t(p, I) is indecomposable and w t # 0 for some t, then any equilibrium is coalition 

stable. 

If neither condition (A) nor (B) is satisfied, the second proposition of Theorem 5.1 is 

not necessarily true [27]. 

Note that Theorem 5.1 admits traders with zero initial stock vectors w k. This corre- 

sponds to a case when the coalition enlists new consumers, which earlier traded only poten- 

tially due to lack of resources, or even creates an "artificial" consumer (a new firm) with 

special behavior to which part of the stocks are transferred. Theorem 5.1 shows that in this 

case the coalition members may benefit only if the conditions of gross substitutability and 

normality are violated. 
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5.3. The proof of Theorem 5.1 uses a construction which is also useful in other cases 
r~ 

Z (in particular, in proving Theorem 3.2). Fix PU=(w~ k67~), ~sk>~0 Let ~ m I~" and sup- 
k=1 

pose, as before, that P2(B,r is the set of (positive) equilibrium prices in the model 

~ (B,~)~ B~(~,~7~) Let the conditions SI-$5 hold. If }7,77'~P2(B,~) , then hy Theorem 

3.5, pw~=P'W ~ vk Denote the value of this scalar product by Pz(B,'m)~m ~ Define the 

function ~:(~k):int ~+rn__~ Rm , 

~ (B) = P2 (B, w) w" -- ~k. (5 .2)  

Let ~~ and E~(!~V), E2(B, w) be the equilibrium sets in the models 9~(W) 

and 9~2(B, ~) , respectively. 

LEMMA 5.1. Let ~sA0 V/~ and E~(~(z)v~-~ If conditions SI-$5 hold, then 

I) ~ (_~) is defined on in[ }~+n and is continuous ; 

2) Y ~ ( X B ) = ~ ( B )  v ~ > 0  ; 

3) ~(B)--O ; 
~! ~ 1 

4) 3N(B) has  the  p r o p e r t y  o f  g r o s s  s u b s t i t u t a b i l i t y ;  

5) E~(W)= U E~(B, w) 
B6~0 

The existence of ~(B) on intR+'~ follows from Theorem 3.4, and property 4 follows 

from Theorem 4.4. Continuity is easily checked using Theorem 4.4. The remaining proposi- 

tions follow from the definitions. 

Let  ~ = ( p ,  c~, k~M) and n = ( P ,  o ~, ~eM) be e q u i l i b r i a  i n  models ~ ( ~ )  and ffJl,(W) , 

r e s p e c t i v e l y ,  and l e t  t he  a l l o c a t i o n  (c ~, k e M )  be J ~ - a d m i s s i b l e  i n  ~a(lfT) f o r  the  c o a l i t i o n  

~Tq. In  what f o l l o w s  we prove  the  p r o p o s i t i o n  o f  Theorem 5 .1  f o r  the  model ~I(W) , a d d i t i o n -  

o~vc0  vk . ally assuming that 

Denote 

2 
k = l  k ~ I  

In o r d e r  to e s t a b l i s h  weak s t a b i l i t y ,  i t  s u f f i c e s  to show t h a t  p c ~ r  f o r  some tEA4 

Without loss of generality~ let w~A0 u Consider the function ~(B) defined in (5.2) 

for w~w k Clearly, B6J60 If fg~0 then applying Theorem 4.1 to the function $~ , 

we find a vector B'=(~k') and an index r such that 

B'6a~o, B'>~/3, [~/----~,, r~M---_[klY6k(B)<0 } (5 .3)  

(by property 3, M-sAO ). If Bfi~0 , then let B~=B By Proposition 1.2 and the con- 

ditions S, Theorem 3.1 on the direct product is applicable to the model 9]~I(~V ) By this 

theorem, 

P'c k = p ' w  ~ =~'~,  t~EM, 

where P ' f P z ( B ' ,  ~ )  - Since 
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by Theorem 4.4, we obtain 

~ p c  =~k, ~6M. (5.4) 

If B~B , then by (5,4), for any k, the vector ~k is no better than ~k for the trader k. 

For B~B this is true for some r@/~- (see (5.3)). If either condition (A) or (B) holds, 

then by Theorem 4.4 >~r~r , so that ~r is strictly worse than ~r . It remains to show 

that r@/~ . Suppose that this is not so; then ~r>~r . Again applying Theorem 4.4, we obtain 

o>~(~)-p~(& ~)~,-~, >~,-~,=0, 
w h i c h  i s  i m p o s s i b l e .  We h a v e  t h u s  p r o v e d  t h e  t h e o r e m  f o r  ~ k ~ O  

I n  t h e  g e n e r a l  c a s e ,  t h e  f u n c t i o n  ~ i s  d e f i n e d  on a cone  d e t e r m i n e d  by  t h e  e q u i l i b r i a  

~, B and t h e  Theorem 3 . 4 .  S i n c e  some c o m p o n e n t s  o f  B may be  z e r o ,  Theorem 4 . 1  d o e s  n o t  

a p p l y ,  b u t  ( 5 . 3 )  may be  p r o v e d  d i r e c t l y  and a l l  t h e  f o l l o w i n g  r e s u l t s  r e m a i n  t r u e .  

5 . 4 .  As p r o v e d  i n  [ 2 4 ] ,  i n c r e a s i n g  t h e  i n d i v i d u a l  i ncome  i n  ~2(B,s) may r e d u c e  t h e  

objective function value in the new.equilibrium, but the conditions of g.s. and normality 

rule out this phenomenon. These conditions also ensure coalition stability under redistri- 

bution of income in ~2(B,s) [27]. 

6. TATONNEMENT PROCESSES 

6.1. A considerable body of mathematical economic research deals with the stability of 

the price-adjustment tatonnement process specified by the system of differential equations 

dp ( 6 . 1 )  
d--~ = Y (p). 

Here the right-hand side is linked by certain relationships with the excess demand function 

, e.g., it is proportional to the exoess demand or satisfies the conditions 

(6.2) 
sign Y~ (p) = sign ~ (p), i -~  1 . . . . .  n, Vp, 

where 

1, x > O ,  
sign x = O, x = O ,  

- - 1 ,  x < O .  

Equation (6.1) is considered as a model of price behavior under conditions of perfect 

competition. It is intended to reflect the fact that in a market with many traders, the 

price of a good generally increases if demand exceeds supply and decreases in the opposite 

case. 

In Soviet economic literature, a different interpretation of the processes (6.1) is 

ac=epted, corresponding to the interpretation of equilibrium models as schemes that ensure 

solution matching in a planned economy. According to this interpretation, the equation 

(6.1) describes a rule which enables the planning organ to arrive at a balanced plan by a 

process of selecting the equilibrium prices [8]. It is significant that such a process can 

be organized utilizing only the current values of the excess demand: it does not require 

detailed information on utility functions and local technologies. 

Discrete analogs of the equations (6.1) may be used as algorithms to compute equilibrium 

prices and programs. 
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The stability of the solutions of equation (6.1) in the economic context was first con- 

sidered by Samuelson [75]. In [55, 69] it was shown that, given a differentiable GS-function 

~9=~ (satisfying certain additional assumptions), the process is locally stable. The 

first global results were derived by Arrow and Hurwitz [37] and by Arrow, Block, and Hurwitz 

[35] for strict gross substitutability; the nonstrict case was considered in [38, 64, 86]. 

A survey of these and some other results can be found in [70], [36, Chaps. 11-13], [i0, Chap. 

9], [20, Chap. VI]. Rader [74] considered a special equilibrium model with production and 

showed that local asymptotic stability is ensured if the demand function (and not the excess 

demand) has the g.s. property, since the supply function S(p) automatically satisfies the 

monotonicity condition (p--q) (S(p)--S(q))>O vp, q 

The rate of convergence of the price adjustment process near the equilibrium is esti- 

mated in [43]. 

In all the above-cited studies, the function ~ was assumed positive homogeneous of 

degree zero, and the Walras identity was usually postulated. The global results were obtained 

by the second Lyapunov method. 

Recently, Howitt [57] proved global stability for a differential inclusion with the 

right-hand side defined by an AGS-mapping with an additional condition ensuring uniqueness 

of the equilibrium prices (up to normalization). In what follows, we will prove two theorems 

generalizing this result (see Subsec. 6.4). 

In the single-valued case, many authors [37, 35, 86, i0] studied in addition to (6.1) 

also the so-called normalized (or normed) process in which the numeraire price is fixed. 

Other modifications of the process (6.1) were also considered. If the equilibrium vector is 

not assumed to be strictly positive, the process must be prevented from reaching the boundary 

of R+ n. To this end, a certain condition of "reflection from the boundary" is added to (6.1) 

[38, 64, 86]. A more basic modification is associated with the assumption that prices change 

in response to expected, and not actual, demand. This introduces additional complications in 

the model. Some results of this kind will be found in [39, i0]. So far they remain without 

further development. 

6.2. For the excess demand ~(p) , which is not necessarily single-valued, the con- 

tinuous-time tatonnement process may be defined by the differential inclusion 

d_pp E~ (P), (6.3) 
dt 

where the mapping ~- satisfies the following sign constancy condition: 

FI. For any vectors P=(Pi), f=(fi) such that f6~-(p) , there is d=(di)6~)(p) for which 

s i g n / { = s i g n  d{ for all i. 

The inclusion (6.3) defines a normalized process with fixed numeraire price (the n-th 

price) if ~- satisfies the following condition: 

F2.  F o r  any P=(Pi), f = ( f 0  such t h a t  f ~ ( p )  , we h a v e  [ ~ : 0  and signfi=signd~, i:#=n, f o r  

some d = (dl) ~ (P) 

S u p p o s e  t h a t  ~ -  i s  d e f i n e d  on t h e  s e t  gcR n, p~ and T i s  a p o s i t i v e  n u m b e r .  The 

function p:[0, T]-+V is called a solution of the differential inclusion (6.3) on the inter- 

val [0, T] with the initial conditions p(0)=p~ if it is absolutely continuous, p(0)=p~ 
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dp(t) 6~"(p(t)) for almost all t. The function p(t) is a solution of (6.3) on [0,+oo) for 
dt 

p(0)=p ~ if it is a solution of (6.3) on [0, T] for any T>0 with the same initial condi- 

tions. In this case, p(t) is also called a path of the process (6.3). 

A point q6V is called an equilibrium if 0e~(q) As before, ~~ The 

following definition of tatonnement stability is a generalization to the case of multivalued 

excess demand. 

Definition 6.1 ([57], see also [86, 44]). The process (6.3) is quasistable if for any 

po6V there is a path originating from p0 , each path is bounded, and all its limiting 

points* belong to ~9 ~ . The process is stable if it is quasistable and every path has a 

single limiting point. 

Note that this terminology differs from the conventional terminology of mathematical 

stability theory. 

In what follows we assume that ~ satisfies conditionsAl, A2, andA3 (seeSubsec. 1.6). 

Condition A1 is also extended to J-. 

This property is observed, say, in a mapping ~" defined in the following way: 

f (p) = F (p) ~ (p) ---- {f]  f = F (p) d, d 6 ~  (p)}, ( 6 . 4 )  

where ['(p) is a diagonal matrix which is a continuous function of p; yi(P) are the diagonal 

elements of this matrix. If all the functions Yi(P) are positive, then F1 holds; ify~(p)--~-01 

y~(p)>0, i=fi=n , then $c satisfies F2 and defines a normalized process. 

Stability theorems for the process (6.3) will be proved in Subsec. 6.4. First, however, 

we have to establish the properties and the existence of paths of this process. 

For the vectors P=(Pi), q=(q~)CintP,+ n we define 

L(p,q)=maxpl/q> bt(p, q)=minp~/qi, (6.5) 
icy i@v 

where  N = { 1 , 2  . . . . .  n} 

The following lemma plays an important role in proofs of stability of the tatonnement 

process (6.3). 

LEMMA 6.1. Let the GS-mapping ~ satisfy AI, A2, A3, and let one of the conditions 

FI, F2 hold for the mapping ~r . If q6~0 and the function p(t) is a solution of the dif- 

ferential inclusion (6.3) on the interval [0, T] for some T>0 , then the function k(p(t),q) 

is nonincreasing, and ~(p(t),q) is nondecreasing on [0; T]. 

If q is a unique vector (up to a scalar factor) included in ~0 , and the difference 

)~(p(t),q)--bt(p(t),q) is constant on [0, T], then p([)=~q for all t~[0, T] for ~=L(p(0),q)= 

~ ( p ( o ) ,  q) . 

P r o o f .  Denote  l(t) =%(p([) ,  q), re(t) = g ( p ( [ ) ,  q) . For  any t6[0, T] we have  

l(Oq, m(t)qe~7o, i(t)q>p(O>ra(Oq, ( 6 . 6 )  

f , ( t ) - - { i [ p ~ ( t ) = l ( t ) q , } r  Im(t)={i!p~(t)=nz(t)q,}-~h7~. 

Using  the  i d e n t i t i e s  (where a ,  b a r e  r e a l  numbers )  

m a x { a , b } - - ( a + b + [ a - - b i ) / 2 ,  m i n { a , b } ~ ( a + b - - [ a - - b j ) / 2 ,  

*Pisa limiting point of a path if p(t~)-Y+p for some sequence t~-++oo 
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we can easily check that ~(t), m(t) are absolutely continuous. Therefore, almost everywhere 

on [0, T], there exist arbitrary functions l(t), re(t), p(t) (we denote them by l(t), re(t), p(t) ), 

and by (6.6) the following relationships hold for any jell (t) and SEfm(t) : 

( t ) -  q7 ~ J~m h --~ (z (t + h) qj - l (t) q~) < q7 ~ lira h -~ (m (t + h ) -  p:  (t)) = qT~p~ (t), ( 6 . 7 )  

m ( t ) : q 7  ~ lira h - ~ ( m ( t + h ) q ~ - - m ( t ) q ~ q Z  ~ lira h - ~ ( p ~ ( t + h ) - - p ~ ( t ) ) :  q~ ~'p~ (t). (6 .8) 
h~+0 h~+0 

By Theorem 4.1 (6.6) and the inclusion >(t)Ef(p(t)) imply (in virtue of either of the 

conditions FI, F2) that for almost every t~[0, T] there are jCfz(t), s@f1~(t) such that 

>7(t)~0, >s(t)>O Therefore 7(t).~<O, t~(t)>O almost everywhere on [0, T]. By absolute 

continuity of L(t) and m(t) , this leads to the first proposition of the lemma. 

If ~0 is a ray, Theorem 4.1 and relationships (6.6), (6.7), (6.8) imply (by either 

F1 or F2) that l(t)--~(t)<O for almost all t such that p(t)~ 0 Therefore, under the 

additional assumptions of the lemma, for almost all t we have p(t)~O o p(t)----l(t)q=m(t)q 

Thus, using the properties of the functions p(t),l(t) , and re(t) , we obtain the second 

proposition of the lemma. Q.E.D. 

In Lemma 6.1 we assume that the differential inclusion (6.3) has a solution. In the 

following subsection we give the conditions for the existence of paths of this process. 

6.3. Consider the compact set 

K= {p I ~<~(p ,  q) ~ ( p ,  q) <~}, (6.9) 

where ~ and ~ are defined in (5.6), ~a~0 and qE~ ~ Let Cu([0, T]; K) be the space 

of continuous functions on [0, T] with values in K, endowed with the uniform convergence 

topology. 

The following proposition can be proved following the scheme suggested in [44]. 

THEOREM 6.1. Let the GS-mapping i~ satisfy AI, A2, A3, and let A1 and one of the condi- 

tions FI, F2 hold for the mapping ~'. Then, for every positive compact set K of the form 

(6.9) and every point p0 from this set, there are paths of the process (6.3) originating 

from p0 . Also (i) none of these paths leaves K; (2) the set S~(p ~ of the initial sections 

of the paths originating from p0 with t6[0, T] is a nonempty compact set in Cu([0 , T]; K); 

(3) the mapping S T is upper semicontinuous on K. 

This theorem implies the existence of positive paths of the process (6.3) originating 

from any given point in inl R+ ~ 

The theorem is proved by constructing an auxiliary bounded mapping ~ which is defined 

(unlike ~-) on the entire R ~ and coincides with ~- on some positive compact set whose 

interior includes K (see [57]). For the auxiliary process 

dp (6 10) 
~t c~ (p) 

paths exist by the Castaign--Valadier theorem (see Theorem A1 in [44, pp. 292-293]). Their 

initial sections are solutions of (6.3). By Lemma 6.1 the paths of processes (6.10) and (6.3) 

originating in K coincide for all t and do not leave K. Properties (2) and (3) follow from 

the Castaign--Valadier theorem. 
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6.4. We now proceed to analyze the stability of (6.3)~ By [44], the Lyapunov function 

of the process (6.3) on a closed set V~R ~ is defined as the continuous function fC:V-+R I 

such that (i) for each path p(t) of the process included in V, the function ~(p(t)) has a 

limit for t-++oo ; (2) if there is a path p(t) originating in V such that for some T>0 the 

function ~(p(t)) is constant on [0, T], then ~-(p(0))D0 �9 

If all the conditions of Lemma 6.1 hold, then ~F(p) =%(p, q)--~(p, q) is a Lyapunov func- 

tion of the process (6.3) for any positive compact set K of the form (6.10). Therefore, the 

quasistability theorem of [44] can be applied to prove the following stability theorem for 

tatonnement processes (6.3) (both normalized and unnormalized) for a system with gross sub- 

stitutability of the excess demand. 

THEOREM 6.2. Let the GS-mapping ~ satisfy AI, A2, A3, and let A1 and one of the condi- 

tions F1 and F2 hold for the mapping ~7- . Then, if there is an equilibrium vector q6~0 and 

it is unique (up to a scalar factor), the process (6.3) is stable on intR+ ~ 

Proof. Since ~(p)=%(p, q)--~(p, q) is a Lyapunov function of the process (6.3) on the 

compact set K (6.10), Theorem 6.1 from [44] implies (by virtue of propositions (i), (2), and 

(3) of Theorem 6.1 from Subsec. 6.3) that any limiting point p of any path p(t) belongs to 

~-0={p1~(p)90} . By the conditions of Theorem 6.2, ~-~176 Thus, the process (6.3) is 

quasis table. 

By Lemma 6.1, the limits of the functions %(p(t),p) and ~(p(t),~ exist as t-+q -c~ 

Since p~ lim p( t  ~) for some sequence t v - + - [ - ~  , then from the definition of ~ and ~ it 
v-+q-co 

follows that lira %(p(t), p)=lim ~(p(t),p)=l Since 
t-++oo t-++oo 

X(p(t), p) p>/ p (t)>~(p(t), p) p, 

we c o n c l u d e  t h a t  p(t)-+fi f o r  t -+ + oo  Q.E.D.  

Note  t h a t  many a u t h o r s  p r o v e  s t a b i l i t y  u s i n g  p r o p o s i t i o n s  s i m i l a r  to  Lemma 6 .1  and 

Theorem 6.1, with the aid of the same Lyapunov function ~CO(p)=;~(p, q)_[~(p, q) (see, e.g., 

[35, 57]). 

The results of Subsec. 3.2 are examples in which pure exchange models with multivalued 

excess demand (satisfying the conditions of Theorem 6.2) have unique equilibrium prices. This 

is not always so, however. 

If the equilibrium prices are not unique, we have the following theorem for a GS-mapping 

satisfying condition A4 (the Walras identity, Subsec. 1.6), which is stronger than A3. It 

implies partial stability of the normalized and unnormalized tatonnement processes. 

THEOREM 6.3. Let the GS-mapping ~ satisfy conditions AI, A2, A4, and let the mapping 

~- be defined by relationships (6.4) with constant nonnegative diagonal matrix P whose 

diagonal elements ?~ are positive for i # n. Then, if ~0=j=~ , the process (6.3) is stable 

on int R+" 
Proof. By Theorem 2.5 (see Subsec. 2.6), we have 

qd~O for qC~ ~ dE~ (p), p6int R+ n, 
for qd~ 0 and pr 

(6.11) 
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By A4, ~'0~0 For some q*~0 , construct the function 

n, ~,~> O, [ (6.12) ~ (p )=  YT~(Pi--q~*)2'wherev--(r~ 1, Yn=O. 
i = 1  

For each  p a t h  p ( t )  o f  t he  p r o c e s s  ( 6 . 3 )  the  f o l l o w i n g  d e r i v a t i v e s  e x i s t  f o r  any T > 0 

a lmos t  e v e r y w h e r e  on [0 ,  T ] :  

d ~ ( P ( t ) ) - - - - 2 q * d q w h e r e  dt=(d/)E~(p(t)), u dp~(t) dt dt 

Therefore, by (6.11), ~(P) is a Lyapunov function of the process (6.3). 

The rest of the proof is entirely analogous to the proof of Theorem 6.2. 

Note that the function (6.12) decreases along the paths. Therefore, under the conditions 

of Theorem 6.3, for y~:=l, i=~-n , any path of the process (6.3) displays monotone convergence 

(in the euclidean norm) to the equilibrium. 

Note that for systems with single-valued excess demand (assuming gross substitutability 

and the Walras identity) and nonunique equilibrium prices, the function (6.12) was also 

successfully applied to prove stability of the tatonnement process considered in Theorem 6.3 

[35, 38]. The application of this function, as in Theorem 6.3, was based on inequalities 

(6.11), which were known for the single-valued case (see [35, 38]). 

6.5. The process (6.1) has not been studied for multivalued inhomogeneous GS-mappings. 

However, the single-valued case was considered by a number of authors [13, 14, 21, 79, 89]. 

We reproduce here the fairly general result from [79]. 

THEOREM 6.4. Let the GS-function ~r-(p) be defined and continuous on the set p-__{plv~ 

p<r} where v, r R+,  ~Z-(r)~O~3Z"(v) If the path p(t) of equation (6.1) converges to 

some point p.l_(p,)~p independently of the initial state p(0)EP , then 

min(q~--p~*)y~(q)<O Vq--(q~)EP, q~p*. (6.13) 

C o n v e r s e l y ,  i f  ( 6 . 13 )  h o l d s  f o r  some p*EP , t h e n  p* i s  t h e  u n iq u e  e q u i l i b r i u m  and 

p(t)--+p* f o r  t-+oo vp(O)6P 

In [79] it is also shown that under the conditions of Theorem 6.4, (6.13) is satisfied 

if Vp, qEP such that q>~p, q=/=p there is a coordinate i for which f~(q)<[~(p) 

Note that if in the fixed income model ~2(B,s) the individual demand functions ~(p, ~) 

satisfy assumptions SI-$5 (see Subsec. 3.2) and are differentiable and strictly positive, the 

following inequalities hold: 

(p_q)(~k(p,~)_~,~(q,~))<O vp, qEintR+,q ~EintR+ ~. ( 6 . 14 )  

From this fact, proved in [24], it follows that the excess demand satisfies condition (6.13). 

Using the existence of equilibrium and normality and applying Theorem 6.4, we can easily show 

that the process (6.1) is stable. The following generalization of Theorem 2.5 and the rela- 

tionship (6.14) is apparently also true: if the GS-mapping ~) satisfies AI, A3 and is normal, 

then (p--q)d<-~O for all p, q, d such that dE~(p), p6intR+ '~, qE~ ~ , and for p~)0 a strict 

inequality holds. However, so far this proposition remains unproved. 

6.6. Tatonnement processes in discrete time were first considered by Uzawa [85]. One 

of the processes proposed in [85] is specified by the relationships 
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Pi (t + 1)=  max [0, p, (t) + @~i (p (t))}, i ~ 1 . . . . .  n - -  1, 
(6.15) 

t = 0 , 1  . . . . .  p ~ l ,  p ( 0 ) = p 0 > 0 ,  p0~_0. 

Uzawa does no t  e x c l u d e  t he  c a s e  o f  z e r o  p r i c e s  f o r  some commodi t i e s .  The p r i c e  v e c t o r  

q ~ 0  i s  c a l l e d  e q u i l i b r i u m  i f  ~(q)~O, q~J)(q)=O 
THEOREM 6.5  [ 8 5 ] .  Suppose t h a t  the  f u n c t i o n  ~ ( P ) = ( ~ i ( P ) )  i s  d e f i n e d  i n  some n e i g h b o r -  

hood in ~§ , satisfies A2, A4, and is twice continuously differentiable; also suppose that 

is nonsingular at some equilibrium point. the matrix with the general term (t]1~ fl~ dp]Opk'~'~ 

If the equilibrium vector q satisfies the condition 

q3J(p)>O vfl=/=q, (6 .16 )  

and ~ i s  s u f f i c i e n t l y  s m a l l ,  then  limp(t)=q f o r  any pOCR+~ 
t-+~o 

Under the  c o n d i t i o n s  o f  Theorem 6 . 5 ,  t he  i n e q u a l i t y  ( 6 . 1 6 )  f o l l o w s  from g r o s s  s u b s t i t u t -  

a b i l i t y  and i n d e c o m p o s a b i l i t y  ( see  Theorem 2 . 5 ) .  

The s y s t e m  (6 .15 )  d e f i n e s  a n o r m a l i z e d  t a t o n n e m e n t  p r o c e s s .  The u n n o r m a l i z e d  p r i c e  ad-  

j u s t m e n t  p r o c e s s  w i t h  s t r i c t  g . s .  was c o n s i d e r e d  i n  [10,  p.  310] ( t h e  p r o o f  o f  i t s  s t a b i l i t y  

c o n t a i n s  many g a p s ) .  

I f  t he  G S - f u n c t i o n  ~ i s  no t  smooth ,  t hen  the  p r o c e s s  (6 .15 )  a p p a r e n t l y  may d i v e r g e  f o r  

any fixed 0 �9 The convergence of the following unnormalized variable step process was proved 

in [23] (for the multivalued case): 

d (t) p(t + l)=max {h; p ( t ) + p ( t ) ~ } ,  d(t)~(p(t)), (6 .17)  

�9 p ( O ) = p O ~  h, 

where h i s  a f i x e d  ( sm a l l )  p o s i t i v e  v e c t o r .  The p r o c e s s  (6 .17)  i s  d e f i n e d  f o r  d ( t )  # 0;  f o r  

d ( t )  = 0 we assume t h a t  i t  s t o p s .  

THEOREM 6.6  [ 2 3 ] .  Suppose t h a t  t he  mapping ~ s a t i s f i e s  A1, A4, t he  s e t s  ~ ( p )  a r e  

j o i n t l y  bounded from be low ~~ , and (6 .11 )  h o l d s .  Also  l e t  

p(t)>0,  ~)(t)= o~, p , ( t )< ~ .  

t ~ l  t = l  

Then the sequence (6.17) converges to the set n ~ . 

Note that the proof in [23] actually implies convergence to a point in ~u 

Using Theorem 2.5, we can easily restate Theorem 6.6 for GS-mappings. 

Processes close to (6.15) are also considered in [5] (see, in particular, page 139) and 

in [21, Chap. 9]. The recent algorithms for the solution of variational inequalities (see 

the survey [2]) are also close to the above procedures: after an appropriate modification of 

the mapping ~) they allow to apply a constant step process. However, the available con- 

vergence proofs of such algorithms are based on conditions which differ from those assumed in 

Theorem 6.6. 

Uzawa [85] proposed a process of successive price changes in order to find the zeros of 

the GS-function (similar to the well-known Gauss-Seidel method). Let p(t) = (Pi(t)) be the 

price vector in the t-th large iteration and suppose that Pi(t + i) have already been found 

2042 



for i = i, ..~ j -- i. Then, according to Uzawa, the value of pj (t + i) is determined in 

the j-th small iteration by solving the equation 

(6.18) 
~j(p l  (t + 1) . . . . .  pj_l(t + 1), v, pj+l (~) . . . . .  p,~(~)) = 0  

f o r  t h e  v a r i a b l e  v .  

THEOREM 6 . 7  [ 8 5 ] .  I f  a s t r i c t  G S - f u n c t i o n  ~) i s  d e f i n e d  and c o n t i n u o u s  on i n tR+  n , 

satisfies A2, A4, and ~90=/=~ , then the process converges to a unique equilibrium vector. 

Uzawa proved this theorem by using the Lyapunov function ~(p)=%(p, q)--~(p, q) , where 

%, ~ are defined in (6.5), q6~) ~ 

In [ii] it was shown that if the GS-function is not strict, the process of successive 

price changes may diverge. It was suggested to select the index j of equation (6.18) at 

random in each step, in accordance with a prespecified probability distribution ~(~), i:-I. 

..., n, where ~(t)=l, ~(t) are nonzero. 
i=l 

When computing the root of equation (6.18), the coordinate j is incremented if ~)~>0, 

and decremented if ~j<0 Among the solutions of equation (6.18) we select the one which 

is "the first to occur," as it requires the least change of the j-th price. It was proved 

in [ii, 17] that the modified process converges under the conditions of Theorem 6.7 even if 

gross substitutability is postulated instead of strict gross substitutability. There is no 

need to find an exact solution of (6.18) at each step. If #~(t+1) is the solution of (6.18) 

closest to pj (t), then we may set pj(tq-l)=,oj(t)+o:~(t)(1)j(t+l)--pj(t)) , where l>J~j({)~p>0 

The convergence of a more general process, allowing simultaneous changes in several variables, 

was proved in [17] under the same basic assumptions. 

6.7. Among the algorithms available for computing the equilibrium vector under g.s. 

conditions.~ we should mention an exceptionally simple and efficient procedure which consti- 

tutes a modification of the simple iterative method. It was developed in [3, 4, 6] for the 

nonlinear intersectoral balance model. Let us consider a somewhat generalized version of 

this procedure ~ 

If ~9 is a continuous GS-function on R+ ~ and the set {p]p~>0, ~)(p)~0} is bounded 

from above, then it contains a maximum point q, such that ~)(q)=0 (Subsec. 2.4). Suppose 

that for some ~>0 the function ~ satisfies the condition 

f o r  any 6 > / 0  and any p s u c h  t h a t  q . < p < q ,  q i s  an  a r b i t r a r y  v e c t o r .  Then  t h e  f o l l o w i n g  

process converges to the vector q: 

] 
p, (t + I)= rain {p~ (t), p~ (t)+ ~ ~z (P (t))}, 

(6. 19) 
/ ~ > ~ ,  i = 1  . . . . .  n, p ( 0 ) = $ ,  

and a l l  t h e  c o o r d i n a t e s  p ( t )  a r e  n o n i n c r e a s i n g .  I n  some c a s e s ,  e . g . ,  i n  f i x e d  i n c o m e  m o d e l s ,  

t h e  i n i t i a l  v e c t o r  ~ can  be  f o u n d  w i t h o u t  d i f f i c u l t y .  

An algorithm to find a minimum point of the set ~9- which ensures that all the coordinates 

are nondecreasing is constructed along the same lines as (6.19) [3, 6, 9] 
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7. CONCLUDING REMARKS 

The assumption of gross substitutability is highly restrictive in the economic sense. 

Therefore various attempts have been made to extend the results obtained for gross substitutes 

systems to a broader class of cases. 

The simplest generalization is the following. We say that the mapping !~) has the prop- 

erty of gross complementarity (g.c.) if (---~) is a GS-mapping. The term "g.c." for single- 

valued demand was introduced by Mosak [68], and a similar concept was used by Hicks [56]. 

Conditions AI, A2, A4 (Subsec. 1.6), A5 (Subsec. 2.3), and some other assumptions used above 

remain valid under the change of sign. All the corresponding results are therefore applic- 

able in the g.c. case (A3 should be replaced with A4, however). 

Morishima [67] divided all the goods (except the numeraire) into two groups, so that 

strict g.s~ applies within each group and strict g.c. applies for goods in different groups. 

Special conditions are imposed on the numeraire. For smooth excess demand functions satisfy- 

ing a number of additional assumptions, Morishima [67] proved uniqueness of the equilibrium 

vector and stability of the process (6.1). A "market" with g.s. and g.c. simultaneously was 

considered also in [21]. 

Although the existence of equilibrium was proved under highly general assumptions (see, 

e.g., [36, 20, 22]), necessary and sufficient conditions are only known for linear models 

[50]. It is not clear if existence theorems of the type of Theorem 3.4 remain valid for a 

wider class of cases without the g.s. condition. 

A survey of equilibrium uniqueness results is given in [51, 20, 36, 13, 21]. Relation- 

ship (6.11) and other versions of the "revealed preference" condition [35, 38, 24] (see also 

[8, p. 138]) lead to convexity of the set of equilibrium prices or to uniqueness of equilib- 

rium, and also to stability of the processes (6.1) (for ~=~) ). Another condition, more 

general than strict g.s. in the smooth case, stipulates that the Jacobian matrix of the excess 

demand has a dominant diagonal at each point [63, 72] (see also [i0, 36]). This condition 

also ensures uniqueness and stability of equilibrium. Two finite-increment forms of the 

dominant diagonal condition are given in [13, 14]. They are apparently applicable to the 

multivalued case as well, although this question has not been studied. 

The tatonnement processes considered in Sec. 6 are not the only possible price adjust- 

ment processes. The analysis of some of these processes is based on conditions of the type 

(6.11), although entirely different assumptions may be used. A survey of the corresponding 

results will be found in [36, Chap. 13] and also in [86, 52]. Among the recent studies on 

this subject, we should mention the article by Smale [83]. 

Unfortunately, very little is known about the specific properties of utility functions 

which ensure that the excess demand satisfies various particular conditions. 

Possible generalizations of the theorems of comparative statics were studied in [62, 

53, 73]. The results indicate that the g.s. condition cannot be substantially relaxed. 

So far, Theorem 3.1 and Corollary 3.1 (equivalence of nonunique equilibria) remain with- 

out generalization. The same applies to Theorem 5.1 of coalition stability. 
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