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INTRODUCTION 

It is well known that every nonsingular n-dimensional projective algebraic variety X CP 
can be isomorphically projected in the projective space p2~+i. The study of varieties X n which 
can be projected isomorphically in a projective space pr with r < 2n + 1 is particularly in- 

teresting. In this case the image of X in pr is a "low-codimension" variety, and such vari- 
eties, as it is known, enjoy many remarkable properties. 

One of the main results of this work is that if the variety X~P can be isomorphically 
projected in a projective space p~n+1-~ 5~0, then the manifold X is itself contained in a 

linear subspace whose dimension depends only on n and 6. More precisely, let pN = <X> be 
the linear envelope of the variety X cP, i.e., the minimal linear subspace of P containing 
X, and let M(n, 6) be the maximal value of N for given n and 6. Then 

and 

2 n ~ - i  - - 6 ~ . < N ~ < M ( n ,  5), 

where f is a quadratic function calculated explicitly in Theorem 3, and the square brackets 
stand for the integer part. Thus, for given 6 and n~6--1 the dimension N of the linear en- 
velope of X lies within the limits indicated in Fig. I. Moreover, our bounds are exact, and 
one can classify all the varieties X n admitting an isomorphic projection in P~, r<2n ~ i, 
for which N = dim<X> = 1([n/(2n-~i--r)]) (there exist three series of such extremal varie- 
ties and also an isolated 16-dimensional variety). 

We remark that in [5] it was shown that if 8 ~ ni2, then M(n, 6) = 2n ~- i -- 5 = f ([n/6]). 
Moreover, from [6] (see also [4]) it follows that M(n, n/2) = 3n/2 + 2; also, in [6] aclassi- 
fication of all varieties X ~, 5 (X) = n/2, is given for which n = 3n/2 + 2 (there are exactly 
four such varieties, the so-called Severi varieties; they correspond naturally to the four 
standard algebras: the ground field, the "complex algebra," the quaternion algebra, and the 
Cayley algebra). Therefore, one can say that the present work generalizes the results of 

[5] and [6] to the case I ~ 5 < n/2. 

The result indicated above may be reformulated in the language of classical algebraic 
geometry as follows: the dimension of the total linear system of hyperplane sections on the 
variety XncPr, r~2n, does not exceed f([n/(2n + 1 -- r)]). This means that the d2mension 
of the vector space of sections of the restriction to X of the standard linear bundle over 
pr corresponding to a hyperplane, is less than or equal to f([n/(2n + 1 -- r)]) + i. 

Our methods are no less interesting than the result described above. The main objects 
we are concerned with are the higher secant varieties. We recall that the k-secant variety 
skx of the variety X is defined as the closure of the union of the k-dimensional linear sub- 
spaces spanned by generic collections of k + 1 points of X. In particular, S°X = X and 
SIX = SX is the usual secant (chord) variety of X. We remind the reader that a nonsingular 
variety X cP can be isomorphically projected in the projective space pT if and only if 

r > dim SX. 

We shall write k0 = k0(X) to denote the smallest nonnegative integer for which S~°X = pN 
(here, as above, P~ denotes the linear envelope of X). It is clear that k0 < ~, and we ob- 
tain an increasing chain of subvarieties 

X = S ° X ~ S X  = S 1 X c . . . c S k ° - I X c S ~ ' ° X  ~ P ~  
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(it is readily checked that all the inclusions are strict; see Proposition i). 

The invariants of the higher secant varieties yield important information on the projec- 
tive properties of the variety X. Here we shall be concerned mainly with the dimensions 
of the higher secant varieties. It turns out that these dimensions for different values of 
k are connected through specific relations. In particular, we show that for a nonsingular 

variety X~ ko(X).~[n/6], where ~ = 2n + 1 -- s, s = dim SX (Theorem 2). In other words, for 
every nonsingular variety XnCPNS[n/~]X = pN This is precisely the result from which we 
derive the aforementioned estimate for the dimension of the total linear system of hyperplane 
sections (Theorem 3). 

To investigate the connections between the numbers s k = dim skx we construct an increas- 
ing chain of submanifolds z~YIcY~...~Y~o~_ X. with the property that there exist 
sk-dimensional linear subspaces L~CP N, which are tangent to X along Y~,1~k~ko, i.e., 
they contain the (projective) tangent spaces to X at all points y~Y~. The main technical 
result of this paper (Theorem i), from which we deduce Theorem 2, asserts that the function 
~k = dim Yk is subadditive on the segment [0, k0], i.e., if k ~ kl ~-... ~ kr, ki~0, i = I, 
.... r, then 6~ ~6~,q- . . . ~ 6~r (here ~0 = 0, ~i = 6). 

Throughout this paper we consider nonsingular projective varieties over an algebraically 
closed field K (for the classification of extremal varieties we must assume, in addition, 
that the ground field has characteristic zero). The nonsingularity assumption is not par- 
ticularly essential. For instance, Theorem 4 is valid for singular varieties too, while in 
the formulation of Theorem 3 it is necessary to introduce an extra term that depends on the 
dimension of the subvariety of singularities. Here the situation is exactly the same as in 
Theorem 3a), b) of [5]. Nevertheless, thenonsingularityassumptionpermits one to shorten con- 
siderably the exposition and to simplify formulas. 

We shall basically adhere to the notations of [5]. As we have already mentioned, 
X designates a nonsingular projective variety in the projective space pN and, unless other- 
wise stipulated, we shall assume that X is not contained in a proper projective subspace of 
pN. The letter Y (with various indices) designates a closed subvariety of X, and we use 
S(Y, X) to denote the variety of points lying on the chords that join the points of Y with 
all the points of X (in particular, S(X,X) = SX is the usual secant (chord) variety of X). 
For a point x~X we denote by TX,x the tangent space to X at x, by TX--~ ~ Tx, x the tangent 

x~X 

variety, and by T(Y,X)-~- ~ Tx, y the relative tangent variety. By a generic point we mean 
y~Y 

a point belonging to an appropriate open everywhere dense subset. Finally, in contrast to 
[5], <A> denotes the linear envelope of the subset A cP N. 

I. Higher Secant Varieties 

Let 7(nCP N be a projective variety. We set 

(S~)  ° = {(Xo . . . . .  x~; u ) ~  X × . . .  × X x p N [ d i m < x o  . . . . .  xk> = k ,  u ~ < x o  . . . . .  x~>}, 
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and denote by S~ the closure of (S~) ° in X X ... × X X pN. We denote by T~ (or simply by 

k+l 

the projection mapping from S~ into PN, and by p~ (or simply Pi) the projection mapping 

of S~ onto the i-th factor of the product X X ... X X (i = 0 ..... k). 

Definition. The variety S~X = T~(S~) is called the k-secant variety of the variety X. 

Thus, skx is the closure of the set of points lying on k-dimensional subspaces passing 

through k + 1 generic points of X. In particular, S°X = X, and S~X = SX is the usual secant 
(chord) variety. Clearly, 

X ~ S X ~ S ~ X ~ . . . ~ S ~ X ~ . . . ~ S ~ ° - ~ X ~ S ~ ° X  = P ~ ,  (1)  

w h e r e  k 0 = min { k ] S ~ X = P N } ;  m o r e o v e r ,  S ~ X ,  O < k . ~ < k  o ,  a r e  i r r e d u c i b l e  p r o j e c t i v e  v a r i e t i e s .  

T h e r e  a r e  a l t e r n a t i v e  ways  o f  c o n s t r u c t i n g  t h e  v a r i e t y  s k x .  F o r  i n s t a n c e ,  l e t  a 0 ~ . ~ . . . ~ . <  

~ r  be  n o n n e g a t i v e  i n t e g e r s  s u c h  t h a t  a o q -  . . .  + a ~ - -  k - - r ,  and l e t  

o 

a-~sa .x  . . . . .  8arx = {(VO . . . . .  U~; U) ~ S ~ ' X  × . . . × S%X × pN] d im <vo . . . . .  ur> = r, u ~ <v o . . . . .  vr>}, 

o i n  SaoX X . X S % X  x P N c P N  X . . . X pN. I n  and Ssao x . . . . .  sarA. the closure of S s a o x  . . . . .  s a r x  . • • 

r+2 
a0,., 

this case we still denote by T (or, in more detail, by T a "'%) the projection mapping of 

Ssa~ X ..... sarm in pN and by Pi (or, in more detail, by p~° ...... r) the projection mapping of 

f a 5Sa0x ..... S rx on SaiX. It is readily seen that 

S~x  --- T . . . . . . .  % (3SaoX . . . . .  s%x)" (2)  

The p r e c e d i n g  d e f i n i t i o n  i s  a p a r t i c u l a r  c a s e  o f  t h e  p r e s e n t  o n e  ( r  = k ,  a o - - ~ . . .  -~-ar ~--0), 
i . e . ,  S ~ X  = S x  . . . . .  x .  We s h a l l  o f t e n  u s e  a n o t h e r  p a r t i c u l a r  c a s e  o f  r e p r e s e n t a t i o n  ( 2 ) ,  

k+ l  

n a m e l y  r = 1. I n  t h i s  c a s e  i t  f o l l o w s  f r o m  (2)  t h a t  

S ~ X  = S (SaoX, Sa*X). (3)  

In particular, for a 0 ----0 we obtain the recursion formula 

S k X  : -  S (X ,  S~-~X).  (4)  

Proposition I. All the inclusions in (i) are strict. In other words, for i ~k~ k0.~ 

Sh-~X =/= S ~ X .  

Proof. We assume the contrary. From (4) it follows that for each point x ~ X.~S~'-IX 
is the cone with the vertex at x. But this is possible only if Sk-IX = pN which contradicts 

the condition k ~ k 0. This contradiction proves the proposition (see [2], Lemma 7.10). 

The following generalization of Terracini's lemma is valid [i, 2, 5]. 

. P r o p o s i t i o n  2.  L e t  u 0 ~ S a . Z  . . . . .  U r ~ S a r x  dim <u 0 . . . .  , Ur> = r, u ~ <v 0, • • . ,  vr> ~_ S ~ X ,  w h e r e  
k = a 0 ~- . • • q- a , - ~  r, and  l e t  Lu ---- Ts~x,  u be  t h e  ( p r o j e c t i v e )  t a n g e n t  s p a c e  t o  s k x  a t  t h e  p o i n t  

u .  Then : 

a )  L u ~ TsaiX, v~, i = O, . . . ,  r, w h e r e  Tsa~x,~ i i s  t h e  t a n g e n t  s p a c e  t o  t h e  a i - s e c a n t  v a r i e t y  

s a i x  at the point vi; 

b) if char K = 0 and u is a generic point of skx, then 

L~ = <Ts~ox ' ~o, . . . .  T s % x ,  ~ >. 

The p r o o f  i s  c a r r i e d  o u t  by i n d u c t i o n  on r ;  t h e  a r g u m e n t s  o f  t h e  p r o o f  o f  t h e  u s u a l  
Terracini's lemma [i, 2, 5] work with no modifications in the present case -- it suffices to 

use the representation S~X = ~ (Ssa0x, sa~+...%+r-1 x) (see (3)), u ~ <y 0, u>, v ~:_- <ul ..... v~>. 

Let u ~ SeX. Set Yu = P0 ~ ((T~)-I (u)). From Proposition 2 it follows that L u is tangent 

to X along the subvariety Yu C X. The dimension of Yu for a generic point u ~ SI:X is a 
projective invariant of the variety X; we set 5k = dim Yu. This invariant is readily ex- 
pressed through the dimensions of the secant varieties. In fact, let sk = dim skx (in par- 
ticular, s o = n, 81 = S = dim SX). We use the representation S~X ----- ~ (Sx, sk_~ x) (see (4)). 
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Then Yu = P~'~-'((~°'~-1)-1(u)), and if l-~<k~k o (which, according to Proposition I, implies 

that S~-IX=/= S~X) , then 

6~ = dim Yu = dim (($°,~-1)-~(u)) = dim Sx, s~_xx--dim S~X = s~- 1 + n ~ t - - s ~  (5) 

(in particular, $I = 2n + i -- s; for brevity we shall write ~ instead of 61). 

From Proposition 2a) it follows that for 
that equalityholds if and only if s~0_ I = N-- 

~k = n. 

Summing equalities (5) for all i.~k'<k, 
k 

s~ ---- (k + l)(n + l) - -  
i = 1  

k < k  o ~  < n, 8~o< n, and  f o r m u l a  (5)  shows 
t ;  f i n a l l y ,  f o r  k / >  k o , s k  = N, and  f o r  k > k 0 ,  

we get for k < k o 
k 

~i--l~ ~, (n--~iq- I)-- I 
i=0 

(6) 

(we recall that ~0 = dim Yx = dim x = 0, where x ~ X  is a generic point). 

Example. Suppose that n = i, i.e., X is a curve. As we have already remarked, Proposi- 
tion 2a) implies that 8k = 0 for k < k0. From formula (6) it follows that sk = min(2k + I, 
N). Thus, basically the dimensions of the higher secant varieties of a curve do not depend 
on the properties of the curve. For higher dimensional varieties this is already far from 

being true. 

Proposition 3. 0 = 60-~<61=6~6~...~<6~0-i~6~0~<n, 6~0-i~<n--6 , andSk = n for k > k0. 

Proof. Consider the rational mappings 

and 

~: 8x,  x, s~-~x -'+ Sz ,  s~-~x, 

(x', x, z ,  u) = (x',  w, [x',  z ]  ~ Ix, u]) 

It is clear that ~ and n are defined 

Let x be a generic point of X, v 
of S~X. Then 

(~o, o, ~_~)-1 (~ )  = 

(~-~ (~, v, ~)) = 

y ~  = p~, o, ~-~ ((¢, o, ~-~)-1 (u)) ~ g '  o, ~-~ (~-1 (x, 

Consequently, 6~ = dim Yu >/dim Yv = 6~-i, i 

sequence. 

It remains to show that if S~X=/=PN, 
and L = Ts~x. u. Proposition 2a) implies 

of [4] we conclude that s = dim SX>/dim 

as asserted. 

Proposition 3 is proved. 

~]: Sx, x, sk-~x -+ Sx, sk-lx ' 

n (x', x, w, u) = (x, Ix', wl N [x, ul, u). 

o u t s i d e  (~o,o,~-2)-1 (X), and 

a generic point of S~-IX, and u E [X, v] a generic point 

n-,  ((+o, +-~)%(~)) ~ ~-~ (+, v, ~), 

(+°, +-~)-~ (v), 

v, u)) = po °' ~-2 (~ (n-' (x, v, u))) = / '  ~-2 ((¢, ~.-2)-, (v)) = r~ .  

. e . ,  t h e  n u m b e r s  6k f o r m  a m o n o t o n i c a l l y  i n c r e a s i n g  

then 6~n--~. Let u be a generic point of skx 

that T (Yu, X) cL. Hence, using Proposition 2.5 

S (Yu, X) = ~k ~ n ~ I, i.e., 8~s--n--i = n--6, 

The next result sharpens the assertion of Proposition 3 concerning the monotonicity of 

the sequence ~k. 

THEOREM i. Let O~<k~<ko be an integer and let k = kl nL..- +kr be a decomposition 
of k into a sum of r integers k I ..... kr~ 0. Then ~e/>8~i~-... q-6k r. That is to say, func- 

tion ~ is subadditive on the segment [0, k0]. 

Proof. First of all, notice that it suffices to consider the case r = 2. In fact, the 
assertion of the theorem for arbitrary r~2 follows from the case r = 2 in view of the chain 

of inequalities 

~k/> ~k*+ -.. +kr- 1 + ~kr' ~k,+... +kr_ I ~ ~k,+ ... ÷kr_ 2 + ~kr_ 1 ..... ~k,+k~ ~ ~k, + 6k2" 
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Thus, let k = l@ m, l.~l~m.~k--I (recall that, by definition, ~0 = 0). Consider 
the commutative diagram of rational mappings 

~8~x,s~.,x iF ~'z-l'm-' /~8~,X,S,,,X 

I /~oz-r ,  z~,, 

in which for generic points x ~ X, vt-i ~ S~-*X, Vrn-~ ~ Srn-IX, and u ~ <x, v~-~,: vm-~> ~ S~X 
p u t  )~(x, vl-1, Urn-l, lt) = (Ul, 
(V,_~, urn, u), w h e r e  v~ = <X, 
vrn, u))] = u. H e n c e ,  

(7) 

we 

Vrn-~, u), w h e r e  v l = <x, ul_~ > ~ <v,~_~, u>, and ~ (x, v~_~, urn-,, u) = 
Vm-l> ~ <v~-l, u> ( s e e  F i g .  2 ) .  I t  i s  c l e a r  t h a t  ~p~,m-~ [)~ (~-~ (v~_~, 

and 

~-~ [~ (~-~ (v~_~, v~,  u))l ~ (~o,~-~,~-~)-~ ( . ) ,  
pO, l-I, m-1 [~-1 (~ (t~-I (Ul-1,  U m, U)))] ~ p~' l-l, m-1 (((p00, l-1, m-l)_ 1 (g)) = y .  

6~ = dim Y~ ~ dim p0 °'z-1 .... 1 [)~-1 (~ (~-1 (U/_I, ~m, U)))]. (8)  

O b v i o u s l y ,  

dim )~ (~-~ (vz-1, vm, u)) = dim ~-i (ul-1, Urn, U) = dim ((~0,m-1)-1 (urn)) = 6m. (9)  

On t h e  o t h e r  h a n d ,  f o r  a g e n e r i c  p o i n t  (vz, vm-1, u ) ~  Ss~x, sm-~ x 

dim)C t (vl, v~-l,  u) = dim ((q00.1-1)-i (vl)) = 6z. (10)  

From (9)  and ( 1 0 ) ,  i t  f o l l o w s  t h a t  

dim k -1 [% (~t -1 (v~-l, Vrn, u))] ~ 6 l @ 5m. (11)  

F o r m u l a s  (8)  and  (11)  show t h a t  i n  o r d e r  t o  p r o v e  Theorem 1 i t  s u f f i c e s  t o  v e r i f y  t h a t  

t h e  m a p p i n g  p0;z-Lm-1 i s  f i n i t e  a t  a g e n e r i c  p o i n t  o f  t h e  v a r i e t y  ~-~ [). (g-~ (vt-~, Urn, u))]. L e t  y 
O,/-1,m-1 be  a g e n e r i c  p o i n t  o f  Po , [)C~ ()~ (~-1 (vl-t ,  vm, ~t)))]. The p r e i m a g e  o f  y i n  %-1 [~, (~t-1 (vi-~, urn, u))] 

c o n s i s t s  o f  t h e  t r i p l e s  (y, vl-1, v=<),  w h e r e  <?7, v}-l> -~ vl, vl = <x, vt-l> I ~] <v~,~_~, u>, <x, v~_l> i~ v~ 
m-1 t-I.m-1 [(~I-l , rn-1)-I  (UI;_I)] ' ( s e e  F i g .  3 ) .  I t  t h e r e f o r e  s u f f i c e s  t o  show t h a t  t h e  s u b v a r i e t i e s  Y~,_, = Pl 

where u ,.--~- </, vr,.~l) and y ~ - I  t ~' m-i ~'rn = ) [(g,0,,~-x)-1 (urn)], i n t e r s e c t  e a c h  o t h e r  a t  a f i n i t e  number  o f  
p o i n t s .  

I n  v i e w  o f  t h e  g e n e r i c i t y  p r o p e r t y ,  Theorem 1 now f o l l o w s  f r o m  t h e  n e x t  lemma. 

.. - m - l .  / - 1 , m - 1  LEMMA. Suppose that S" -~X  =/= P ~ .  Let v~._~ be a generic point of S~- IX  and Yv~;_~ = ])i 

[((f-~ .... t)-~ (v~,:_~)]. Then the dimension of the variety S (Yvk_~, X), consisting of the chords join- 
m-i ing the points of Yv~_~ with those of X, is equal to dim ym-~ v~-i + ~ + i. 

2 r o o f  o f  t h e  Lerama. A c c o r d i n g  t o  P r o p o s i t i o n  2 a ) ,  2 '  "~-~ ('} Vk_l, Sm-IX.) ~ L,  where L = Ts~_ix ,~,~._~, 
and  T'  m-~ (Y%-t'  S~-~X)  d e s i g n a t e s  t h e  r e l a t i v e  v a r i e t y  o f  t a n g e n t  s t a r s .  From P r o p o s i t i o n  2 .5  
of [4] it follows that 

• , m-~ 5 , r n _ l X ) ~ d i  m m-~ d~m 3 (Y%_F Y~_~ -- sin-1 + 1. (12)  

But, with obvious notations, 

m-1 : S [ S  [xTm-1 X),  S m - 2 X ) .  

m-1 T h e r e f o r e ,  t h e  d i m e n s i o n  o f  t h e  p r e i m a g e  o f  a g e n e r i c  p o i n t  o f  S (Y'~-I '  Sm- IX)  u n d e r  t h e  m o r -  
p h i s m  

sY(74, srn-  x s sm- x) 

is not less than the dimension of the preimage of a generic point of S IY =-i X) under the mor- 
VR- I' 

phism 
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S (Yo~. ~, X). S y m _  1 ----> m - 1  

Vk_l , X 

Since, according to (12), the first of these dimensions is equal to zero, the second is also 
equal to zero, and hence 

dim S m-1 • = dim m-1 (Yvk-l '  X)  --~ dim S_ ~-I x Yv~'-1-6 n -6 1. 
YVk_ 1, 

T h i s  c o m p l e t e s  t h e  p r o o f  o f  t h e  lemma and  h e n c e  t h a t  o f  Theorem 1 t o o .  

COROLLARY. F o r  0 ~ k ~ k0~8~ > kS. 

To p r o v e  t h i s  i t  s u f f i c e s  t o  a p p l y  Theorem 1 w i t h  r = k ,  kl = . . .  = kr = I .  

THEOREM 2.  k 0 ~ [n/8], i . e . ,  S['qs]X = P~ ( h e r e  t h e  s q u a r e  b r a c k e t s  s t a n d  f o r  t h e  i n t e g e r  
p a r t ;  f o r  6 -- 0 t h e  a s s e r t i o n  o f  t h e  t h e o r e m  i s  v o i d ) .  

"-. k o S " X  ---- P~,  so  t h a t  i n  o r d e r  From t h e  d e f i n i t i o n  o f  k0 i t  f o l l o w s  t h a t  f o r  a ~ , 
t o  p r o v e  t h e  t h e o r e m  i t  s u f f i c e s  t o  c h e c k  t h a t  n/8 ~ ko. From t h e  C o r o l l a r y  t o  Theorem 1 we 

d e d u c e  t h a t  8 k ° ~ k 0 8 ;  on t h e  o t h e r  h a n d ,  8 k ° ~ d i m  X = n. C o n s e q u e n t l y ,  k 0 8 ~  n and  k o ~ n / 6  
( a l t e r n a t i v e l y ,  one  c a n  u s e  t h e  c o r o l l a r y  t o  Theorem 1 f o r  k = k0 -- 1 and  t h e  i n e q u a l i t y  
8~0-1 ~ n - -  8, p r o v e d  i n  P r o p o s i t i o n  3 ) .  

Theorem 2 i s  p r o v e d .  

COROLLARY, ( H a r t s h o r n e ' s  c o n j e c t u r e  on l i n e a r  n o r m a l i t y ;  s e e  [1 ,  2 ,  5 ] ) .  I f  SX=y=P zv, 
then 8 ~ n/2 and n ~< 2/3 (N -- 2). 

P r o o f  o f  t h e  C o r o l l a r y .  F o r  8 .~  n/2)[n/6] = t and  h e n c e ,  a c c o r d i n g  t o  Theorem 2 ,  S X  = p N .  
F u r t h e r ,  f o r  S X  =/= PZV, N > I s - 6  t = 2 n - 6 2 - -  8 > / 3 n / 2 - 6 2 ,  i . e . ,  n - ~ < 2 / 3 ( N - - 2 ) ,  a s  c l a i m e d .  

2. Maximal Imbeddings of Varieties of Low Codimension 

We denote by M(n, 6) (m(n, ~)) the maximal (respectively, minimal) integer N for which 
there exists a nonsingular projective variety X C P~ such that dim X = n, 6(X) = 6 (as usual, 
we assume that X ~= P~ and is not contained in a hyperplane). It is not hard to see that 
functions m and M are defined on the set of all pairs (n, 8) ~!Z ~, for which 0~ 8~ n. More- 

over, it is natural to put M(n, 0) = ~. 

Proposition 4. (i) re(n, 8)---- 2n-6 I--8; 

(ii) M ( n ,  8 - -  t )  >.~ M ( n ,  8 ) - 6  t ;  

(iii) .M ( n - -  i ,  8 - -  i) > M(n, 6)-- t .  

Proof. (i) In fact, for every variety X with dim X = n, 6(X) = 6, there holds the in- 
equality m(n, 6)~s)- ~-2n-6 i- 8. Taking for X the intersection of n + 1 -- ~ generic hyper- 

surfaces Hi CP~+I-~, degH~ I, i-- I ..... n-6 I-- 8, we see that re(n, 8) ~2nq- I -- 8, as as- 

serted. 

(ii) Suppose that XCP M(~,6) is a variety such that dim X = n, 6(X) = ~, and let CxC 
p~(~,~)~ be the projective cone over X with the vertex at a generic point u E P~'.~)+L Let 
X' C pM(n,6)+~ denote the intersection of CX with a generic hypersurface H ~ pM(n,~)+~ deg H ~ i. 
Then it is readily checked that X' is a nonsingular variety contained in no hyperplane, dim 
X' = dim X = n, SX' = SCX -- CSX, where CSX is the cone over SX with vertex u, s X, = dim 

SX' = dim CSX = sX + i, and 8 (X') ---- 2n-6 i --Sx,----- 8-- I . This proves (ii). 

(iii) Let X ~ pM(n, 6)be a variety such that dim X = n, 6(X) = 6, and denote by X'C 
pM(n,~)-t the intersection of X with a generic hyperplane H C pM(n, 6). Then it is readily 

checked that X' is a nonsingular variety contained in no hyperplane and such that dim X' = 
n -- I, SX' ---SX~H, sx, = sx -- I and 6(X') = 6 -- i. This proves (iii) and completes the 

proof of Proposition 4. 

D_efinition, We call an extremal variety any nonsingular variety X C pN such that dim X -- 

n, 6(X) = 6, and N = M(n, 6). 

THEOREM 3. 

M(n, 6)</([n/6]) - -  n (.  +(~ + 2 ) 2 6  + 1 f2 1.6Jn'[(5-- 8 f n }  - 2 ) [ 6  = n (n -I- 6-1- 2) ~- e (8-- e - -  2 ) 2 5  ' 
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where 

k ( k + t )  B.-- ,1 ,  ] ( k ) - - - - ( k ~ - t ) ( n - +  l )  2 

and ~ =-- B { + ]  

i n t e g e r  a n d  f r a c t i o n a l  p a r t  o f  a n u m b e r ) .  

P r o o f .  L e t  X C p M ( . , 6 ) b e  a n o n s i n g u l a r  v a r i e t y  w i t h  d i m  X = n a n d  6(X)  = ~.  
r em  ! a n d  f o r m u l a  (6 )  o f  S e c .  1 i t  f o l l o w s  t h a t  f o r  /~ < k 0 

s~=(k Jr l)(n q- i)-- Y, B~-- I <(k + ~)(n + 1)-- (~, i) B-- i--/(k). 
i = l  ~=I 

~n(mod B) (here the square brackets and the braces denote respectively the 

From Theo- 

(13) 

The graph of the function f(k) is a parabola (see Fig. 4); f(k) attains its maximum (equal 

to (2n~-5-~2)2 i) at k= 2n--6~-2 86 26 =a, and f(k) is monotonically increasing for O.~k.~a. 

By the definition of k0, M (n, 5) = s~o ~ [ (k0) , while Theorem 2 implies that k 0 ~ [n/B]. If k, < 
[n/B], then k 0 ~ [ n/B] -- I ~ n/B-- I <a and f (ko)..~'~/(n/B-- i) =f(n/B)-- I </([n/B]) (we remark that 
from (13) it follows that f([n/6]) is an integer). Therefore, one has always M(n, B)~ 
/(In/B]), and to prove Theorem 3 it suffices to calculate f([n/5]) explicitly. 

Remarks. i. For ~ > n/2, [n/6] = 1 and Theorem 3 gives N..~2n-~-i--B =s. Since s~N, 
s ~ N, SX ~ P~', and we obtain again a proof of Hartshorne's conjecture on linear normality 
(see Corollary to Theorem 2). In this case N = s = 2n + 1 -- 5~ (3n-~ I)/2. 

2. For 6 = n/2 (n even), Theorem 3 gives N ~ 3n/2 ~- 2. Here we must distinguish two 
cases : 

i )  S X  ---- p N  N = s = 3n/2 + t;  

i i )  S X  --:/= p x ,  N --  s @ 1 = 3n/2 + 2. 

The variety for which s = 3n/2 + 1 and N > s are called Severi varieties. Hence, ii) 
means that every n-dimensional Severi variety lies in the (3n/2 + 2)-dimensional projective 
space (and projectively generates this space). Incidentally, this result follows from the 
classification of Severi varieties [4, 6]. 

3. From Remark 1 it follows that if n is odd and SX =/= P'~, then 5 ~ (n --I)/2, i.e., 
s~ (3n + 3) 2. Let us consider the case where 6 = (n -- i)/2. According to Theorem 3, for 
n = 3 (5 := 1) N ~ n (n ~- 3)/2 ---- 9 = s  + 3, w h e r e a s  f o r  n > 3 

N ~  -2(7--]]) -~- "'2 n - - I  2 2 n--I ~ 2 = ~ - i - 2 "  

T h u s .  f o r  n ~ t (rood 2), 5 z ( n - - 1 ) / 2 ,  t h e  f o l l o w i n g  c a s e s  a r e  p o s s i b l e :  

--  5 i i i )  N ---- 3n 7 3 n - - 3 .  i i )  N - - ~ - 3 n 2  , ~ ; i) SX-- - -  P~', N - - - , ~ - -  ~ , " 2 

iv )  n-----3, N- - - -9 .  

As an example of realization of ii) one can take the nonsingular hyperplane section of 
any of the Severi varieties; an example of iii) is provided by the five-dimensional Segre 
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variety p2 X P3C p~1 and an example of iv) is the Veronese variety v~ (p3)C p9 (see Remark 4) 

4. The estimates in Theorem 3 are exact (though, of course, not for all the pairs (n, 
~)). Examples of extremal varieties XnC p.v for which N= M (n, 6) ----/([n/8]) are provided by 
the Severi varieties (~ = n/2; see Remark 2) and also by the Veronese varieties v= (pn) 
pn (n~3)/2 (~) -- i), the Segre varieties pa X p0 C p(a+l)(b+l)-I with I a- b I ~ I (6 = 2) and the Grass- 

[m+l~ 

man varieties G (m, I) C pl:,2 )-i (~ = 4). One can show that every variety X n ~ P~, for which 
N == .~f (n, 6) ---- ] ([n/~]) (i.e., equality is attained in Theorem 3) coincides with one of the vari- 
eties listed in this remark. 

THEOREM 4. Let Xn~ pr be a nonsingular projective variety (here we do not require that 
there be no proper linear subspace of pr containing X). Then the dimension of a complete 
linear system of hyperplane sections of X does not exceed f([n/(2n + i -- r)]), where f is 
the function given by formula (13). In other words, 

n [(4n-- r + 3)' ] 

Proof. Let X'C pN be the imbedding of X given by the complete linear system l©x (I) 1, 
N = h ° (X, Ox (1)) -- I. Then 6 (X') -- 2n -~ l -- sx, = 2n -~- i -- sx >.~ 2n -~- i -- r. According to Proposi- 
tion 4 (ii), N< M(n, 6 (X'))< M(n, 2n n u I -- r). Hence, Theorem 3 implies that h ° (X, Ox (I)) < 
] ([n/(2n'-~ I -- r)]) ~- i. On the other hand, it is readily verified that the second term in the 

expression J 2n+i--r ----- 2(2n--r-~l) ~- ~-(~nlZr-~ attains (for fixed n and r) its maximum, 

equal to (2n -- r -- I)3/8 (2n-- r + l),for e = (2n -- r -- 1)/2. Therefore, 

[ (  ] )  n ( 3 n - - r - ~ 3 )  (2n--  r - - l ) '  ( 4 n - - r  + 3 )  "~ 

Theorem 4 is proved. 

COROLLARY. Let X n ~ pr be anonsingular variety, m ~ 2n. Then h ° (X, Ox (1)) ~ (n~2), 

Proof. Since Theorem 4 is valid even if X is contained in a linear subspace of pr we 
may assume, without loss of generality, that r = 2n. In this case the corollary is a straight- 

forward consequence of Theorem 4, because ] (n) = n (n -F 3)/2 = (n2+2) -- I. 

Remarks. i. The particular case of the Corollary to Theorem 4, in which X is a complex 
variety and r = s X = dim SX = dim TX = 2n, was proved in [3, 6] where other (analytic) 
methods were used. 

2.  I t  t u r n s  o u t  t h a t  i f  f o r  t h e  v a r i e t y  X ~ c P ~ h ° ( X ,  O x ( t ) )  --~- n.~ , t h e n  X - - P  ~, a n d  t h e  

i m b e d d i n g  P ~ C ;  P ~  i s  g i v e n  b y  a g e n e r i c  c o l l e c t i o n  o f  2n + 1 q u a d r a t i c  f o r m s .  

3.  N e e d l e s s  t o  s a y ,  i f  r > 2n ,  t h e n  h ° (X,  ©x  ( 1 ) ) c a n  a s s u m e  a r b i t r a r i l y  l a r g e  v a l u e s :  
i t  s u f f i c e s  t o  t a k e  a n o n s i n g u l a r  l i n e a r l y  n o r m a l  v a r i e t y  X '  C pN (d im X '  = n, h ° (X ' ,  Ox  ( t))  = 
N + l )  and  p r o j e c t  i t  i s o m o r p h i c a l l y  i n  Pr;  t h e  i m a g e . o f  X'  u n d e r  t h i s  p r o j e c t i o n  i s  a n o n -  
s i n g u l a r  v a r i e t y  X C p r  f o r  w h i c h  d im X = n a n d  h ° (X' ,  Ox  (t))  --- N @ t .  T h i s  a s s e r t i o n  i s  o n l y  
a r e f o r m u l a t i o n  o f  t h e  f a c t  t h a t  M(n ,  0 )  = co. 

T h e o r e m  4 i s  c o n v e n i e n t l y  i n t e r p r e t e d  u s i n g  t h e  n o t i o n  o f  i n d e x  o f  n o n n o r m a l i t y .  

D e f i n i t i o n .  L e t  X n C p r  b e  a n o n s i n g u l a r  v a r i e t y .  Then  t h e  n u m b e r  ~, (X)  = h ° (X,  Ox  (t}) - -  
r -  1 i s  c a l l e d  t h e  i n d e x  o f  ( l i n e a r )  n o n n o r m a l i t y  o f  t h e  v a r i e t y  x n .  

I n  o t h e r  w o r d s ,  t h e  i n d e x  o f  n o n n o r m a l i t y  m e a s u r e s  how l a r g e  i n  c o m p a r i s o n  w i t h  r t h e  
number  N c a n  b e ,  f o r  w h i c h  t h e r e  i s  a v a r i e t y  X ' ~  pN w h i c h  p r o j e c t s  o n t o  X. 

I n  p a r t i c u l a r ,  t h e  l i n e a r l y  n o r m a l  v a r i e t i e s  a r e  t h e  v a r i e t i e s  w i t h  i n d e x  o f  n o n n o r m a l i t y  
e q u a l  t o  z e r o ,  t h e  i n d e x  o f  n o n n o r m a l i t y  o f  t h e  p r o j e c t i o n  o f  a S e v e r i  v a r i e t y  i s  e q u a l  t o  
one  ( s e e  R e m a r k  2 f o l l o w i n g  T h e o r e m  3 ) ;  f o r  ~ > 0 t h e  i n d e x  o f  n o n n o r m a l i t y  f o r  c u r v e s  i s  
e q u a l  t o  z e r o ,  f o r  s u r f a c e s  i t  d o e s  n o t  e x c e e d  o n e ,  a n d  f o r  t h r e e - d i m e n s i o n a l  v a r i e t i e s  i t  
may a t t a i n  t h e  v a l u e  3 .  

T h e o r e m  4 c a n  n o w - b e  r e f o r m u l a t e d  a s  f o l l o w s :  
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THEOREM 4'. 
have 

2 ( 2 n - - s + i )  
a (2n-- s--~+ -- 1) 

-~- 2 ( 2 n - - s + t )  2 ( 2 n - - s @ i )  

For every n-dimensional nonsingular projective variety X with Sx~S, we 

----- ( 2 s - - 3 n ) ( s - -  n - - 1 )  @ 

~- n 2 --n-- - ' [ 2 n - - ~ + 1  - - F - -  2 ~ - - s + i J  ' 

where E = n(mod(2n -- s + i)). In particular, if Sx~J2n (or, equivalently, SX = TX, see [5], 
Theorem 2), then L(X)~]n(n--i)/2. 
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MONODROMY AND VANISHING CYCLES OF BOUNDARY SINGULARITIES 

G. G. Ii'yuta UDC 513.836+517.919 

INTRODUCTION 

The Weyl groups of the classical Lie algebras have symplectic analogs, which are certain 
infinite groups of automorphisms of a lattice with symplectic structure. The theory of 
singularities gives a natural definition of these groups. In this paper we describe symplec- 
tic versions of the Weyl groups B~, C~, F~, G 2. 

In the theory of singularities, with each critical point of a function (on a manifold 
with boundary or without boundary) there are connected two (monodromy) groups, which are sub- 
groups of the group of automorphisms of an integral lattice [2]. One group is generated by 
reflections in the basis vectors with respect to some symmetric bilinear form, the other by 
"reflections" (transvections) in the basis vectors with respect to some skew-symmetric bi- 
linear form. At the present time there is a description of the monodromy groups of nonbound- 
ary critical points: symmetric ones in [4, 22], and skew-symmetric ones in [14-18] (see 
also [5-12] and [19-21]). Little is known about monodromy groups of boundary critical points: 
it is proved in [I] that the symmetric monodromy groups of simple boundary critical points 
B~, C~, F4 coincide with the Weyl groups of the corresponding types. The present paper is de- 
voted to the description of the skew-symmetric monodromy groups of boundary critical points 
of functions. As an example of the results found we describe the skew-symmetric monodromy 
groups of simple singularities B~, C,,F4 (i.e., the symplectic analogs of the Weyl groups of 
the same name): a linear automorphism of the corresponding lattice belongs to the skew- 
symmetric monodromy group of a singularity B~, C,~or F%, if and only if it is fixed on the 
kernel of the skew-symmetric form, preserves the skew-symmetric form and the orbits of the 
basis vectors under the action of the monodromy group. In the paper we explicitly give the 
orbits of the basis vectors (or, using the geometric terminology, the set of vanishing cycles). 

Arnol'd [i] gave a constructlon imbedding the monodromy group of a boundary singu- 
larity in the monodromy group of a nonboundary singularity (in particular, to the singulari- 
ties B~, C~, F4 there correspond, respectively, A~u_a, D~+I, E6). Namely, the lattice of a non- 
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