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Introduction 

The classical Gauss map 7 associates with each point of a nonsingular oriented hyper- 
surface H~R n the unit outer normal vector to H at this point; thus, 7: H + S N-I, where 
S N-I is the unit sphere in R n. For complex hypersurfaces and manifolds of codimension 
greater than one, it is natural to call the Gauss map the map which associates a point x of 
the manifold X with the point in the Grassman manifold corresponding to the tangent space to 
X at the point x. Many results of classical differential geometry can be interpreted in 
terms of the Gauss map. 

In algebraic geometry it turned out to be more convenient to consider the Gauss map not 
for affine, but for projective varieties; this is connected, in particular, with the fact 
that, as we shall see below, the singularities at infinity play a quite important role. 
Thus, the Gauss maPNT: X n + G(N, n) associates with each point x of the nonsingular projec- 
tive variety xn~ P the point in the Grassman manifold G(N, n) of n-dimensional projective 
subspaces in pN, corresponding to the (projective) tangent space TX,x to X at the point x. 
Thus, the fiber of 7 over an n-dimensional linear subspace Ln~p N is the set of points 
(with multiplicities), at which the imbedded tangent space to X coincides with L. Analog- 
ously, for any n ~ m ~ N - 1 one can define the higher Gauss map 7m, whose fiber over an 
m-dimensional linear subspace Lm~p N coincides with the set of points x ~X such that TX,x~ 
L m (i.e., L is tangent to X; more precise definitions which are suitable for the singular 
case also are given in Sec. 2). 

Gauss maps in algebraic geometry have actually been studied since the last centrury 
and play a very important role (this relates especially to the maps 7 = 7n and.yN-1). It 
suffices to say that all the most important invariants of algebraic varieties, including 
the canonical class, have been defined in terms of them. However, the structure of the Gauss 
maps was investigated very weakly until recently. In the simplest case, when m = n, a basic 
question is the determination of how much X is "distorted" under the map 7. A classicial 
conjecture, proved in the present paper, asserts that for complex varieties the map ~ is fi- 
nite (i.e., all fibers of 7 are finite) and birational (i.e., 7 is an isomorphism almost 
everywhere), so that the distortion is minimal. Up to now the greatest progress in the di- 
rection of proving this conjecture was given by the theorem of Griffiths and Harris [3], 
asserting that if X~P N is a complete variety, then the field of meromorphic functions on 

X is a finite extension of the field of meromorphic functions on y(X) (i.e., almost all fi- 
bers of 7 are made up of a finite number of points). As to the higher Gauss maps 7m, we 
give a sharp estimate of the dimension of their fibers and we describe the structure of a 
generic fiber. In particular, we prove the following tangents theorem: 

Let Lm~p N be a linear subspace, tangent to the variety xn~p N along the subvariety 
+ 

Y~X. Then dimY ~ m - n. 

For example, for m = N - 1 we see that a hyperplane cannot be tangent to a variety 
xn~ P N along a subvariety of dimension greater than or equal to N - n. Another classical 
conjecture according to which for a nonsingular variety xn~ pV, dimX* e dimX, where X*C 

pN* is the dual variety, consisting of points of pN*, corresponding to hyperplanes in pN, 
tangent to X, follows from this. 

The tangents theorem is a consequence of the following result. Let Y be an irreducible 
r-dimensional subvariety of an irreducible n-dimensional variety X CP N, S(Y, X) be the clo- 
sure of the set of points of pN, lying on chords, joining points of Y with points of X, and 
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T'(Y, X) is the variety swept out by the limits of chords <x, x'>, when x, x ~ + y~Y (here 
<x, x'> is the line passing through the points x and x' ~ x; when X is nonsingular, T'(X, Y) 
coincides with the union of the imbedded tangent spaces to X at points of Y). Then either 
T'(Y, X) = S(Y, X), or dimT'(Y, X) = r + n, dimS(Y, X) = r + n + i. For example, for Y = X 
we get that the nonsingular variety X~P N can be projected isomorphically to pM, M < 2n, if 
and only if X can be unramifiedly projected to pM (the special case of the last assertion 
for N ~ 2n was proved by Johnson [6]; see also [2]); this result contrasts sharply with the 
conjecture of Massey on immersions of topological manifolds proved recently by Cohen. 

In this paper we consider applications of the results cited above to the geometry of 
varieties of small codimension, ramification cycles and double points of projections and 
other questions. It is shown in [12] how one derives the Hartshorn conjecture on linear 
normality from the tangents theorem. Another application of the results of the paper is 
given by Faltings, Fujita, Balliko and Chiantini, Ein etc. One should note that in contrast 
with Faltings and other authors, who apply methods of formal geometry, and also Griffiths 
and Harris, who make differential-geometric calculations, we use purely geometric consider- 
ations, which in this situation are not only simpler, but also lead to considerably sharper 
results. 

A complete description of the structure of Gauss maps is also possible for analytic sub- 
varieties of complex tori. The corresponding results, which also have applications to sub- 
varieties of small codimension and pluricanonical systems, will be published in a separate 
paper. 

I. Relative Secant Varieties and Local Properties of Projection~ 

Let xn~ P N be an irreducible nondegenerate n-dimensional projective variety (i.e., 
one which is not contained in any hyperplane) over the algebraically closed field K, and 
let Yr~ xn be a nonempty irreducible r-dimensional subvariety of X. We set Ay = (Y × X) ~ 
AX = {(~, x)~ Y × X I x = y}, where AX is the diagonal in X × X, and let SY,X°~ ((Y × X) \ 
Ay) × P , SY,X ° = {(y, x, z) I z~ <x, y>}, where by <x, y> we denote the chord joining points 
x and y~ We denote by SY,X the closure of SY,X ° in Y × X × pN, by pi Y (i = i, 2) the projec- 
tion of SY,X onto the i-th factor of Y × X × pN, and by,Y: SY,X ÷ pN the projection to the 
third factor, and let p12 Y = pl Y × p2Y: SY,X + Y × X, S(Y, X) =~Y(sY,X), T'Y,X = (p±2y)-1 
(Ay), ~Y = ~Y IT'y,x, T'(Y, X) = ~Y(T'Y,X). For Y = X, Sy,x = SX, S(Y, X) = SX is the ordin- 
ary secant variety, and T'(X, X) = T'X is the variety of tangent stars (see [12]), and the 
morphisms pi Y, p~=Y, ~Y and ~Y are the restrictions of the morphisms Pi, P12, ~ and ~ to the 
subvarieties SY,X~SX and T'y,x c T' X (see [12]). 

Definition i. We call the cone T'Y,X,y = ~Y((p~=Y)-~(y × y)) the (projective) tangent 
star to X at y relative to Y. We call the variety T'(Y, X) = ~ T'y,X,y the variety of (pro- 

N~Y 
jective) tangent starts to X relative to Y. 

It is clear that T'Y,X,y~T'X,y~TX,y, where T'X,y is the (projective) tangent star 
to X at y [12], and TX,y is the (projective) tangent space to X at y. If X is nonsingular 
along Y, i.e., Y ~ SingX =~ and Y~SmX = X~SingX, then T'(Y, X) = T(Y, X) = ~ TX,y. 

~Y 

The following proposition generalizes Proposition i of [12] to the relative case and is 
proved completely analogously. 

Proposition i. a) Let y~Y, x.~X, x z y, z ~<y, x>. Then TS(Y,X),z~<Ty,y, TX,x >, 
where <A> denotes the smallest linear subspace of pN, containing A. 

b) Let us assume in addition that charK = 0. Then for generic points y~ Y, x~X, 
z~<y, x> TS(Y,X),z = <Ty,y, TX,x >. 

Let ~y be the ideal Ay in Y x X, @~,x =~ pec ,~ ~/~+~,y~ Y~ ~,x,~.= @~,x (~ ~(Y). 
9=~ 

Definition 2. We call :~TY,X,y the (affine) tangent star to X at y relative to Y. 

It is easy to see that @'Y,X,y contains the tangent cone and is contained in the tang- 
ent star to X at y (see [6; 12]), which in its own right is contained in the Zariski tang- 
ent space ~X, y. Here ~fY,X,y = T'Y,X,y (we assume here that X is imbedded in pN, and the 
dash denotes projective closure). 

Definition 3. Let f: X + X' be a morphism of algebraic varieties and let Y.~X be an 
irreducible subvariety. We say that f is J-unramified relative to Y at the point y;~Y, if 
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only 

ly. 

the morphism dyf I~?Y,X,y is quasifinite. If f is J-unramified relative to Y at all points 

y~Y, we shall say that f is J-unramified relative to Y. 

Definition 4. In the notation of Definition 3 we say that f is a J-imbedding relative 
to Y, if f is J-unramified relative to Y and one-one on f-i(f(Y)). 

Remark I. If f is nonsingular along Y, then f is a J-imbedding relative to Y if and 
if f is closed imbedding in some neighborhood of Y in X. 

The following theorem generalizes Theorem 1 of [12] and is proved completely analogous- 

THEOREM I. Let Y be an irreducible subvariety of X. We consider the following condi- 
tions: 

a) For a generic linear subspace L~P N, codimL = m + i, a projection X + pm with cen- 
ter in L is a J-imbedding relative to Y. 

b) There exists an LN-m-I~P N such that a projection X +Pm with center in L is a J- 
imbedding relative to Y. 

c) dimS(Y, X) ~ m. 

d) There exists a Zariski open subset U~Y × X such that for y × x~U, dim<Ty,y, 
TX,x > ~ m. 

e) Let y~ SmY, x~ SmX. Then dim<Ty,y, TX,x > ~ m. 

Then a) 4=>b)<=~c)~d)<=>e). If in addition char K = 0, then all the conditions a)-e) are 
equivalent. 

The following theorem is a generalization to the relative case of Theorem 2 of [12] 
and is proved by essentially the same method. 

THEOREM 2. For an arbitrary irreducible subvariety yr~xn exactly one of the follow- 
ing conditions holds: 

a) dimT'(Y, X) = r + n, dimS(Y, X) = r + n + i. 

b) T'(Y, X) = S(Y, X). 

Proof. Let t = dimT'(Y, X). It is clear that t ~ r + n. If t = r + n, the theorem 
is obvious, since S(Y, X) is an irreducible subvariety S(Y, X)~T'(Y, X) and dimS(Y, X) ~ 
r+n+l. 

Let us assume that t < r + n, and let L N-t-1 be a linear subspace of pN such that L ~ 
T'(Y, X) = O. We denote by ~: pN \ L + pt a projection with center in L, and let X' = ~(X), 
Y' = ~(Y). Since ~ IX is a finite morphism, dimY' × X' = r + n > t and it follows from 
Theorem 3.1 of [2] that YX' × X = (~ IY × ~ IX)-I(Apt) is a connected scheme. 

We show Supp (Yx' × X) = Ay. Let us assume the contrary. Then by definition, for all 
y × x~ (YX' × X)~ Ay @Y((p12Y)-~(y × x)) ~ L ~ and consequently for each point N× ~ 

~ Ay~((Yx, × X) \ Ar) T' (}~, X) ~ L ~ Tr, x.~ ~ L = ~Y ((p~)- (~ x ~)) ~ L=/= ~ contrary to the 
choice of L. 

Thus, SuppYx' × X = ~y and consequently L Q S(Y, X) =~.) since t~ dimS(Y, X) ~ N - 
dimL - 1 = t and S(Y, X) = T'(Y, X), i.e., condition b) holds. Theorem 2 is proved. 

Just as in [12], we get the following corollaries. 

COROLLARY i. codims(Y,X) T'(Y, X) ~ i. 

COROLLARY 2. Let ~: X n + pm be a projection with center in the subspace L N-m-1~ pN. 
Let us assume that ~ is J-unramified relative to the irreducible subvariety Yri~ X n and that 
m < r + n (i.e., dimL e N - n - r). Then ~ is a J-imbedding relative to Y. 

Proof. It is easy to see that it follows from our assumptions that L ~ T'(Y, X) =~ . 
Consequently, dimL + dimT'(Y, X) < N and dimT'(Y, X) < N - dimL = m + 1 ~ n + r. Hence 
Theorem 2 shows that T'(Y, X) = S(Y, X). Thus, L ~ S(Y, X) =O , which is what was required. 

COROLLARY 2' Under the conditions of Corollary 2 let us assume that ~ is unramified 
at all points of Y. Then in a neighborhood of Y, ~ is an isomorphism. 
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Remark 2. Completely analogously, Corollaries 2, 2', and 2" can be proved for arbi- 
trary morphisms X + pm (not just for projections). The corresponding results generalize 

the results of Sec. 5 of [2]. 

THEOREM 3. Let yr~ X n be a subvariety of the projective variety xn~p N. Let us 

assum~t-~at t~ere exists a point u~ pN~x such that projection X ÷ pN-~ with center at u 

is a J-imbedding relative to Y ThencodimpNX = N - n ~ __r - b + i, where b = dim(Y~ SingX). 
• 2 

Proof. It is clear that it suffices to consider the case when Y is irreducible. Let 
s = dim(Y, X) and let z be a generic point of S(Y, X). We set L = TS(Y,X),z, Qz = P~Y 
((~Y)-~(z)). It follows from Theorem 2 that either T'(Y, X) = S(Y, X), or s = n + r + i. In 

r - b 
the latter case N e s + i = n + r + 2 and codimpNX = N - n e r + 2 > - -  + i. Consequent- 

2 
we assume that T'(Y, X) = S(Y, X), Qz ~ ~ and dimQz = r + n - s. Obviously, L ~TX,x for 
all points x~Qz ~ Sing X. 

Let M C P N be a ~eneric linear subspace of codimension b + i, X' = X ~ M, Y' = Y N M, 
Q'z = QzN M, L' = L N M. Then the variety X' is nonsingular along Y' and T(Q'z, X') ~-L '. 
On the other hand, X'<~I L'. Hence S(Q'z, X') z T'(Q'z, X') and it follows from Theorem 2 
that dimS(Q'z, X') = dimQ'z + dimX' + 1 = (4 + n - s - b - i) + (n - b - I) + 1 = 2n + r - 

s 2b - i. 

On the other hand 

dims (Q~, X') <d im(S(Y,  X) ~ M) = s - - b - -  t. 

Consequently, 2n + r - s - 2b - 1 ~ s - b - i, 2s ~ 2n + r - b and 2N ~ 2s + 2 ~ 2n + r - 
r - b 

b + 2, i.e., codimpNX = N - n e ---i--- + i. Theorem 3 is proved. 

COROLLARY 3. Let yr be a subvariety of the variety xn~p N, where X is nonsingular in 
a neighborhood of Y. Let us assume that there exists a point u~pN~x such that the pro- 
jection ~: X ~ pN-~ with center at u is an isomorDhism in a neighborhood of Y (according to 
C~r~ary2~fThe~rem2f~rN5n+rthisisequiva~entt~beingunramifiedata~p~ints~fY). Then 

r+3 ~ 
N > n + ...... 

2 2N + b - 2 
Remark 3. For Y = X Theorem 3 gives n ~ .-- , which is somewhat weaker than the 

2N + b 3 
estimate n ~ 3 i, proved in Theorem 3a) of [12]. This is explained by the fact that 

for Y = X the subvariety Qz can be replaced by the subvariety Yz = p~(~(z)) of dimension 
one larger. However, for Y ~ X the estimate in Theorem 3 is sharp. We demonstrate this with 
the following examples. 

Example 1 (to simplify the arguments we assume that char K = 0). a) Let X~P ~ be a 
rational surface F~ of degree 3. Then X is the image of P= under the rational map defined 
by a linear system of quadrics passing through a fixed point of P=, i.e., by projection of 
the Veronese surface v=(P=)~ P~ from some point of it. We denote by Y a minimal section 
of F~ (so that Y is an exceptional curve of the first kind on F~). Then Y is a line and the 
imbedding X~ P ~ is given by the complete linear system IY + 2FI, where F is the fiber of 
F~. Since the tangent plane at an arbitrary point of X contains the fiber passing through 
this point, and consequently intersects Y, it follows from Proposition Ib) that dimS(Y, X) = 

r+l 
r + n = n + 2 - 3, so that S(Y, X) = T(Y, X) ~ P~ and there exists a projection z: X ÷ 

PS, which is an isomorphism in a neighborhood of Y (in a suitable coordinate system v(X) is 

given by the equation u0us ~ = u~u==). Here N = 4 = n + r + 3 - -  

2 

b) Let X ~ = G(4, I)~ P s and let Y = PS be the linear subspace of lines passing through 
a fixed point of P~. Then for generic points y~Y, x~X, Ty,y [] TX,x is the line corres- 
ponding to the line in P~ passing through the fixed point and intersecting a fixed line. 

It follows from Proposition Ib) that dimS(Y, X) = dimT(Y, X) = 8 = r + n - 1 = n + __r + 1 _ 
N - i. 2 
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Let xn~ P N be a nonsingular variety and let Dm (respectively Rm) be the set of double 
points (respectively the ramification set) with respect to a generic projection pN + pm, m ~ 
n. In other words, if L N-m-~ is a generic linear subspace of pN, then 

D= = ~ x ~  X I Nx' ~ x, x' W=x, <x, x'> ~ L=/= ~} ,  

~ = { x ~ X  I r~,~ ~ L # ~ ® } .  

COROLLARY 4. L e t  2(m - n)  g r g n - 1. Then f o r  any  s u b v a r i e t y  Y r ~ X n Y r Q  Dm=/=.~I 
I f  i n  a d d i t i o n  r > 0,  t h e n  f o r  any  s u b v a r i e t y  Y r ~ X ~ Y  ~ ~ ~m=/=~j. 

P r o o f .  S i n c e  R m C D m ,  i t  s u f f i c e s  t o  p r o v e  t h e  a s s e r t i o n  w i t h  r e s p e c t  t o  Rm. L e t  us  
assume t h a t  yr  Q Rm = ~ .  Then f o r  a g e n e r i c  l i n e a r ,  s u b s p a c e  L ~ - m : ~ P  N T (Y, X) ~ ~ = ~ 
and c o n s e q u e n t l y  d imT(Y,  X) ~ m. On t h e  o t h e r  h a n d ,  i t  f o l l o w s  f rom Theorem 3 t h S t  f o r  r > 

0,  d imT(Y,  X) ~ n + r + 1 Thus ,  u n d e r  o u r  a s s u m p t i o n s  m ~ n + r + 1 - -  - - ,  i.e., r ~ 2(m- n) -- 
2 2 

I. Consequently for r e max{l, 2(m - n)},Y ~ ~ ~m~=~. Corollary 4 is proved. 

Remark 4. The assertion of Corollary 4 is only meaningful for m ~ 3n - 1 It is clear 
2 

that for the validity of Corollary 4 it suffices to require that X be nonsingular in a neigh- 
borhood of Y (we restrict ourselves to the nonsingular case in order not to introduce the 
definitions of ramification cycles and multiple points in the general situation). The pre- 
ceding examples show that the estimate in Corollary 4 is sharp. 

Remark 5. For m = n it is easy to deduce from Corollary 4 that the divisor Rn is ample 
on X (see Proposition 3 of Sec. 2). 

2. Tangents Theorem. Structure of Gauss Mappings 

Definition 5. Let L~P N be a linear subspace. We say that L is tangent to the variety 
X~P N along the subvariety Y~ X (respectively L is J-tangent to X along Y, respectively L 
is J-tangent to X relative to Y), if L~TX,y (respectively L ~T'X,y, respectively L~ 
T'Y,X,y) for all points y~Y. 

It is clear that if L is tangent to X along Y, then L is J-tangent to X along Y, and if 
L is J-tangent to X along Y, then L is J-tangent to X relative to Y. 

THEOREM 4. Let xn~ P N be a nondegenerate variety, yr~ X n and zb~Y r be closed sub- 

varieties~ and let Lm~p N, n ~ m ~ N - 1 be a linear subspace, J-tangent to X relative to Y 
along Y\ Z (i.e., L~T'Y,X,y for all points y~Y~Z). Then r ~ m - n + b + i. 

Proof. Let M be a generic linear subspace of pN of codimension b + i. We set X' = X N 
M, Y' = Y N M, L' = L N M. It is clear that n' = dimX' = n - b - i, r' = dimY' = r - b - 
i, m' = dimL' = m - b - i, and L' is J-tangent to X' relative to Y' along Y'. In other 
words, T'(Y', X')~ L' On the other hand, it follows from the nondegeneracy of X that the 
variety S(Y', X'), containing X', does not lie in the subspace L' . Consequently, S(Y', 
X') ~ T'(Y', X'), and it follows from Theorem 2 that dimT'(Y', X') = r' + n' = r + n - 2(b + 
i). Since L'~T'(Y' X') m' > r' + n' i.e. r' ~ m' ' , , - , , - n = m- n and r ~ m- n + b - i. 
Theorem 4 is proved. 

COROLLARY 5. If the linear subspace Lm~p N is tangent to the nondegenerate variety 
xn~p N along the closed subvariety yr~xn, then r ~ m - n. 

Corollary 5 is called the tangents theorem (see [2]). 

Remark 6. It is clear that if Z does not contain a component of Y, then one can assume 
that Z CY~ SingX. 

We give an example showing that the estimate in Theorem 4 is sharp. 

Example 2. Let ~pN, N = 2n - b - 2 be the cone with vertex pb over the nonsingular 
projective variety X' = Pm × pn-b-z~ p~n-~b-s Then X* = (X')* = P~ × pn-b-z ~(pb), = 

p~n-~b-a (here and in what follows the asterisk denotes the dual variety) and the subs~ace 
Lm~p N , n ~ m ~ N - i, is tangent to X at the point x~ SmX (and all points of <x, P~>\ 
pb, where <x, pb> is (b + l)-dimensional linear subspace generated by x and pb), if and only 
if the (N - m - l)-dimensional subspace L* lies in the (N - n - l)-dimensional subspace 
T*X,x~ X*. It is easy to see that an arbitrary (n - b - 3)-dimensional linear subspace 
lying in X*.coincides with (TX,x)* for some x~ X. Let pn-b-~ X* and let L* be an arbi- 
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trary (N - m - l)-dimensional subspace of pn-b-2. Then the m-dimensional subspace L = (L*)* 
y :  Ix ,--  X L * ~  ~*~--pn-~-,~ is tangent to X at all points of y~pD, where Y = Pm-n+b~1~P b, -- ~ ~ u_~x,x~ ~_ °~. 

Thus, for the subspace ~, the variety Y = pm-n+b+i~Pn-~X, and the subviriety Z = SingX = 
pb in Theorem 4, equality holds. 

Proposition 2. Let xn~ pN be a nondegenerate variety which has the property Rk (see 
[4, Chap. IV=, (5.8.2)], i.e., X is regular in codimensions ~ k (in other words, b = dim 
(SingX) < n - k), and let L be an m-dimensional linear subspace of pN. We set X' = X • L, 
and let b' = dim (SingX'). Then b' ~ 2N - m - n + b - i = c + s + b - i, i.e., X' has the 
property Rk_c_=e+~ , where c = codimpN X, e = codimpNL. 

Proof. For arbitrary point ~ of (~ - l)-dimensional linear subspace L*~ pN* we set 
XI = X • ~*, where ~* is the hyperplane corresponding to ~. It is clear that X' = ~ X%. 

k ~ *  

Let Y = SingX', Yk = SingXl, iS L ~. It is easy to see that Y~_ ~ Yx, so that b' = dimY ~ 
%~L* 

max b~ ÷ s - - l ,  where  b~ = dimY~. O b v i o u s l y ,  t h e  h y p e r p l a n e  ~* i s  t a n g e n t  t o  X a t  a l l  p o i n t s  
~ L *  
o~ Y X ~  S i n g X .  Hence i t  f o l l o w s  f rom Theorem 5 t h a t  b~ g c + b. C o n s e q u e n t l y ,  b ~ ~ c + e + 
b - 1. P r o p o s i t i o n  2 i s  p r o v e d .  

The f o l l o w i n g  s i m p l e  example  shows t h a t  t h e  e s t i m a t e  in  P r o p o s i t i o n  2 i s  s h a r p .  

Example 3. Let xN-~ pN be a quadratic cone with vertex pb and lethal+ I ~ m ~ 
/ 

N - i (the square brackets denote the greatest integer in the n~ber). Then X* is a singu- 
lar quadric in the (N - b - l)-dimensional space pb* ~pN*. As is known, X* contains a 

of dimension ~N--~--2]. Let L* be an arbitrary (N - m - l)-dimensional projective subspace 
~ ~ 

linear subspace of it. We set L = (L*)*, X' = X • L. Then dimL = m, and it is easy to see 
that Y = SingX' is an (N - m + b)-dimensional linear subspace. 

The following two corollaries follow quickly from Proposition 2, Proposition 5.8.5 and 
Theorem 5.8.6 of [4, Chap. IV=]. 

COROL~RY 6. If the varietyXn~p N has the properties Se+ z = SN_m+ z and Rc+~e_ ~ = RsN_:m_n_~, 
andLm~p N is a linear subspace, for which dim(xn'L m) = m + n - N, then the scheme X • L is 

reduced. In particular, if X is nonsingular, N < 2/3(m + n + i) and dim (X • L) = m + n - 
N, then X-L is a reduced scheme. 

. 

COROL~Y 7. If the variety xn~p N has the properties Se+= = SN_m+ ~ and Rc+=s = 
RsN_=m_n, then for an arbitrary linear subspace Lm~ P N such that dim(X n • L m) = n + m - N, 
the scheme X • L is normal (and consequently irreducible and reduced). In particular, if 
X is nonsingular, N g 2/3(m + n) and dim(X • L) = m + n - N, then X • L is a normal scheme. 

Particularly important for applications is the case when L is a hyperplane. We formu- 
late our results for this case specially. 

COROLL~Y 8. a) If the variety xn~p N is normal and N < 2n - b - I, where b = dim 
(SingX), then all hyperplane sections of X are reduced. In particular, for N < 2n all hyper- 
plane sections of a nonsingular variety are reduced. 

b) If the variety xn~p N has properties Ss and RN_n+ ~ (the latter means that N < 2n - 
b - 2), then all hyperplane sections of X are normal (and consequently irreducible and re- 
duced). In particular, if X is nonsingular and N ~ 2n - !, then all hyperplane sections of 
X are normal. 

Remark 7. We note that Corollary 7 gives considerably more precise information than 
theorems of Bertini type in which one speaks of generic hyperplane sections; however, as 
Examples 4 and 5 below show, in order that it be valid it is necessary to impose some condi- 
tions on the codimension of X in pN. 

Remark 8. If K = C, and b = -i, then the irreducibility of hyperplane sections of X 
follows from the Barth-Larsen theorem, according to which for N < 2n - i, PicX = Z is gener- 
ated by the class of a hyperplane section of X (see [9]). 

We give examples showing that the estimates in Corollary 8 cannot be improved. 

Ex~ple 4. Let X0 = P~ x pn-b-~ pan-:b-~ and let Y0 = x x pn-b-:~ X 0 be a linear 
subspace. We denote by Xz~ P 2(n-b-~) the section of X 0 by a generic hyperplane passing 
through Y0. It is easy to see that Xz is a nonsingular projectively normal variety. Let 
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xn~p N, N = 2n - b - 1 be a projective cone with vertex pb and base X~. It is clear that 

X is a normal variety where dim (SingX) = b, so that X has properties S= and RN_ n. However, 
X has a nonreduced hyperplane section corresponding to a hyperplane in p=n-~b-~, tangent to 
X 0 along Y0 (see Example 2). 

Example 5. Let X 0 = P~ × pn-b-~ p=n-2b-~ and let X be a projective cone with vertex 
pb and base X 0. Then xn~.P N, N = 2n - b - 2 is a Cohen-Macauley variety, where dim (SingX) = 
b, so that X has properties Ss and RN_n+ z. However for any hyperplane L such that L*~X* = 
X0*, L • X = H~ ~.H 2 is reducible and consequently a nonnormal variety (here Sing (L • X) = 
H~ H= = pn-=; see Example 2). 

Let xn~ pN be a nondegenerate variety. For n i m < N - 1 we set 

~m = {(x, a ) ~ S m X  × G(N,  m) I L ~  Tz,~}, 

where  G(N, m)~s  t h e  Grassmann m a n i f o l d  o f  m - d i m e n s i o n a l  l i n e a r  s u b s p a c e s  o f  pN, La i s  t h e  
l i n e a r  s u b s p a c e  c o r r e s p o n d i n g  t o  t h e  p o i n t  a ~ G ( N ,  m), and t h e  dash  d e n o t e s  t h e  c l o s u r e  in  
X × G(N, m), and we d e n o t e  by pm: ~m ÷ X ( r e s p e c t i v e l y  ?m: ~m ÷ G(N, m)) t h e  map o f  p r o j e c -  
t i o n  t o  t h e  f i r s t  ( r e s p e c t i v e l y  s e c o n d )  f a c t o r .  

D e f i n i t i o n  5. The map ~m i s  c a l l h d  t h e  m- th  Gauss map, and i t s  image Xm* = ~m(~,~ i s  
c a l l e d  t h e  v a r i e t y  o f  m - d i m e n s i o n a l  t a n g e n t  s u b s p a c e s  t o  t h e  v a r i e t y  X. 

Remark 9. The two e x t r e m a l  c a s e s  d e s e r v e  s p e c i a l  a t t e n t i o n :  m = n and m = N - 1. For  
m = n we g e t  e s s e n t i a l l y  t h e  u s u a l  Gauss map ? :  X - - ~ G ( N ,  n ) ,  and f o r  m = N - 1, XN_I* ~ 
pN* is the dual variety. 

Let xn~ pN be a nondegeneratevariety, dim (SingX) = b e -i. 

THEOREM 5. a) For any point ~m(Pm -~ (SmX)), dim~m-~(~) ~ m - n + b + i. 

a') dimXm* e (m - n)(N - m - 2) + (m - b - i). 

b) For a generic point ~Xm*, dim~m-~(~) ~ max{b + i, m + n - N - i}. 

b') dimXm* e min{(m - n)(N - m) + (n - b - i), (m - n + I)(N - m) + I}. 

c) Let char K = 0 and let ~m = ~m°~m be the Stein factorization. Then 8~Vm is a bira- 
tional isomorphism, and the generic fiber of the morphism ~m (and ~m) is a linear subspace 
of pN of dimension dim ~m- dimXm*. 

Proof. Assertion a) follows quickly from Theorem 4, and assertion a') from a) (since 
dim~,~= dimX + dimG(N - n - i, m - n - i) = n + (m - n)(N - m)). 

b) Let us first assume that m = N - i. It is clear that dim~N_~-1(~) ~ n - I, and 
it suffices to verify that if n - 1 e b + 2, i.e., n e b + 3, then dim~N_~-~(~) ~ n - i. 
Let us assume the contrary, and let x be a generic point of X. Since n - 1 > b + i, it fol- 
lows from Theorem 4 that the system of divisors Y~ = pN_~(~N_~-~(=)), ~(TX,x)*, is mobile 
and consequently X = ~ Y~, where ~ runs through the set of generic points of (TX,x)*. Con- 

sequently, for generic points y~X there exists a hyperplane Ay~ (TX,x)* such that for a 
generic point ~Ay, L~ ~TX,y. But then <TX,x, TX,y>~ (Ay)* = pn+i, i.e., for a generic 
pair of points x, y~X, dim (TX,x I~ TX,y) = n - i. It follows from this that either all 
n-dimensional linear spaces from ~n(X) are contained in some linear subspace pn+~ pN, or 
they all pass through a generic (n - l)-dimensional linear subspace pn-~ pN. But in the 
first case X is a hyperplane and dimY~ = n - 1 ~ b + 1 contrary to our assumption, and in 
the second case X* = pN-n, and it is easy to see that the intersection of X with a generic 
linear subspace pN-n+~ pN is a nonsingular strange curve, so that charK = 2, and X is 
a quadric, and again we arrive at a contradiction. Thus, assertion b) is valid in the case 
m = N - 1 (if charK = 0, then the proof is noticeably simpler). 

Now let us assume that assertion b) is proved for m = k + i, and we prove it for m = k. 
It is clear that for generic points ~k~Xk*, ~k+i~Xk+~*, dimY~ k ~ dimY~k+~. Hence, if 
b + 1 ~ k + n - N, then dimY~ k ~ dimY~k+~ ~ b + i. Let us assume that dimY~k+~ ~ k + n - 
N, k + n - N > b + i. If dimY~ k < Y~k+~, then assertion b) is obviously valid. Let us 
assume the contrary. Then for a generic point x~X and a generic point ~k+~ Xk+~* such 
that Y~k+~ x, each hyperplane in L~k+~, containing TX,x, is tangent to X at all nonsingu- 
lar points on X of some dimY~k+~-dimensional component of Y~k+~, and it follows from Theorem 
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4 that dimY~k+~ ~ b + i. But then dimYak = dimY~k+~ ~ b + i, so that again dimYak ~ 
max{b + I, k + n - N - I}. Assertion b) is proved. 

Assertion b ~) follows quickly from b). 

c) Let am be a generic point of Xm*. The linear subspace LammC P N is tangent to X 
at all points of the submanifold Yam ~ SmX, where Yam = Pm(~m-~(am)), while it is not hard 
to see that Yam ~ SmX = N (Y~ N SmX), where a runs through the set of points of X* for which 
La~Lam. It follows from the classical reflexivity theorem of Segre (see, e.g., [8]) that 
if charK = 0, then for a generic point ~X* thesubvariety Ya = PN-I(~N-I-~(~)) coincides 
with the linear subspace (Tx*,a)*. Consequently, Y=m = Y=m ~ Sm % = ~ (~x~.=) ~ is also li- 

~=~L~ 
near subspace of pN. Since char K = 0, the morphism ~m is separable ~ and consequently 
smooth at a generic point. Hence the field of functions K(Xm*) is algebraically closed in 
K(~m) and Vm is a birational isomorphism. 

Theorem 5 is proved. 

COEOLLARY 9. If charK = 0, xn~ pN is a nonsingular variety, N - n + 1 ~ m ~ N - i, 
then a generic n-dimensional tangent subspace is tangent to X along a no more than (m + n - 
N - l)-dimensional linear subspace (for N e 2n this estimate is better than the estimate 
given in Theorem 4). For n ~ m ~ N - n + 1 a generic m-dimensional tangent subspace is 
tangent to X at a single unique point. 

COROLLAEY i0. Let xn~ pN, X n ~ pn, n* = dimX*, b = dim (SingX). Then n* e n - b - I. 
In particular, for a nonsingular manifold X, n* e n. If n e b + 3, then n* e N - n + 1 (this 
estimate is better than the preceding one for N ~ 2n - b - i). 

Both estimates in Corollary i0 are sharp: for example, for a Segre variety xn= P~ × 
pn-~ p=n-i = pN, X* = X, and n*= n = N - n + i. 

Remark i0. If char K = 0, b = -i, the inequality n* e N - n + 1 was proved independent- 
ly by Landman (see [7]). In this case another proof was given previously by the author (see 
[ii], where the case n = 2 is considered; the general case is completely analogous). 

COROLLAEY ii. Let xn~ pN, X n ~ pn, b = dim (SingX). Then dim~n(X) e n - b - I. In 
particular, for a nonsingular variety X n, dimyn(X) = dimX and ~n is a finite morphism. If 
in addition char K = 0, then Yn is a birational isomorphism (i.e., ~n is a normalization mor- 
phism). 

Remark ii. When K = C, b = -I, Griffiths and Harris [3] proved that dim~n(X) = dimX. 
After the appearance of the announcement of the author's results [2], Ein [I] and Ran [I0] 
gave different proofs of the finiteness of Yn in this case. Our original proof of Corollary 
ii (and also of the general Theorem 5)used methods of formal geometry. We give a sketch of 
this proof of Corollary Ii. 

It is clear that we can assume that b = -i. Let us assume that contrary to the asser- 
tion of Corollary ii, the n-dimensional subspace L, corresponding to the point aL~G(N, n), 
is tangent to X along an irreducible subvariety Y, dimY > 0, i.e., Y.~n-~(aL). Let ~ = 
X/y be the completion of X along Y and let ~ = Yn(X)/~L be a formal neighborhood of the point 
~L in the projective variety yn(X)~G(N, n). Since dim~n(X) > 0 (because X ~ pn) and 
~0(~, ~) ~ ~0(~, ©~), ~0(~, ©~) is an infinite-dimensional vector space over K. On the 
other hand, let M~ pN be a linear subspace such that dimM = N - n - i, L ~ M = ~ , and let 
~: X + pn be a projection with center in M. Then ~/w: ~-+P>=(r) is an isomorphism of formal 
spaces and consequently~°(~ ©~)~__~(~, ~), where ~ = ~y~P~) is the completion of the 
subspace L along Y. But by a familiar theorem on formal functions [5] for dim Y~0 ~(~, 
©~) = ~. The contradiction found proves Corollary ii. 

Besides the interpretation given in Definition 6, the Gauss map ~n: X + G(N, n), where 
xn~ pN, X n ~ pn, is a nonsingular variety, admits another interpretation. First of all, 
Yn is the map corresponding to the vector bundle ~ (-i) (where ~ is the normal bundle to 
X in pN) with distinguished (N + l)-dimensional vector space of sections corresponding to 
points of K N+~ (where pN = (KN+~ 0)/K,). 

Further, let L~ pN, limL = N- n - 1 be a generic linear subspace and let VL: X + pn 
be a projection with center in L. We denote by RL the ramification divisor of the finite 
covering ~, ~ = { z ~ l  ~ ~ ~.~=~}. The linear system IRLI generated by divisors RL, 
LEG(N, N - n - i) gives the Gauss map Yn. Here IRLI has no basis points, but the ramifi- 
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cation divisors RL corresponding to all linear subspaces LN-n-~C pN are the preimages of 
Schubert divisors on G(N, n). 

Proposition 3. The linear system IRLI is ample. 

Proof. Proposition 3 follows quickly from Corollary ii in view of [4, Chap. II, Cor. 
( 6 . 6 . 3 ) ] .  

Remark 12. I n  t h e  c a s e  e h a r K  = 0 Ein  [1]  p r o v e d  t h a t  t h e  c o m p l e t e  l i n e a r  s y s t e m  g e n e r -  
a t e d  by r a m i f i c a t i o n  d i v i s o r s  i s  ample f o r  an a r b i t r a r y  n o n s i n g u l a r  f i n i t e  c o v e r i n g  o f  pn. 

The e x a c t  s e q u e n c e s  

0 - + ~ x - ~ O ~ + l - ~ ( - - i ) - - ~ 0 ,  

O--+Ox ( - - i ) - - ~ - z - + O z  (--~)--+0, 

where  OX i s  t h e  t a n g e n t  b u n d l e  t o  X, a n d ~ x  i s  t h e  v e c t o r  b u n d l e  o f  r ank  n + 1, t h e  p r o j e c t i -  
v i z a t i o n s  o f  t h e  f i b e r s  o f  which  c o r r e s p o n d  n a t u r a l l y  t o  t h e  p r o j e c t i v e  t a n g e n t  s p a c e s  t o  X, 
show that ?~ (©~(~.n)(1))---~det ~---Kx (n + i) = Kx~)©x (n q-i), where KX is the canonical bundle. 
We note that precisely the fact that a section of the line bundle Kx(n + i) vanishes along 
R L lies at the base of the classical definition of the canonical class. The next corollary 
follows quickly from Proposition 3. 

COROLLARY 12. Let xn~p N, X n ~ pn be a nonsingular variety. Then KX(n + i) is an am- 
ple line bundle. 

Remark 13. In fact, under the hypotheses of Corollary 12, the bundle KX(n + i) is even 
very ample, at least if charK = 0 (see [i]). This is easy to prove by induction on n, using 
the fact that for X there exist sufficiently many nonsingular hyperplane sections, while by 
Kodaira's vanishing theorem for such a section Hn-~ X n the complete linear system [KH + 
nH2[ = [Kx + (n + I)H.H[ is cut out by the linear system [KX + (n + 1)HI (here KH is the 
canonical class on H). 

Proposition 4. Let xn~p N be a nondegenerate variety, b = dim (SingX), c = codimpNX 
and let yrcx be a subvariety of X for which m - r = codimLY < c = N - n, where L m = <Y> 

is the linear span of Y. Then r~.min {n--i, [~-J]}, where the square brackets denote the 
~ ~ ~ 

greatest integer in a number. 

Proof. Without loss of generality we can assume that Y qESingX. It follows from the 
hypotheses that for an arbitrary point y~Y, dim (TX,y ~ L) ~ dim Ty,y e r. Consequently, 

%'x(Y) = ? x ( Y ~ S m X ) ~ { a ~ G ( N , n ) l d i m L a  ~ L~>r}  = S ( L , r )  c G ( N , n ) ,  

where S(L, r) is a Schubert cell. Since by hypothesis m - r ~ N - n, n + m - r < N, so that 
for any point y~ Y~ SmX there exists a hyperplane M, containing L and tangent to X at y. 
We set 

S ( M , L , r )  = {a ~ G (N, n) ] L= C M, d i m L .  ~ L > r } .  

Then S(M, L, r)~ S(L, r), dimS(M, L, r) = (r + l)(m - i) + (n - r)(N - n - i), dimS(L, r) = 
(r + l)(m - r) + (n - r)(N - n) and codims(L,r )S(M, L, r) = n - r = codimxY. Replacing r by 
min (dimTX,yi~ L) if necessary, we can assume that ?x (Y) ~ S(~f, L,r) NSm (S (L,r))=~=~. Then 
~Y 

dim (?x (Y) ~ S (M, L, r)) >~ dim Vx (Y) - -  codimsCr,, r)S (:]f, L, r) = (r - - / )  - -  (n - -  r) = 2r - -  n - -  f,: 

where f is the dimension of a generic fiber of 7Xly. On the other hand, 

~x (Y) ~ S (M, L, r) = ~x ({Y ~ Y ~ S m X [  Tx,~ ~ M}), 

and it follows from Theorem 4 that 

d i m ( ? x ( Y )  ~ S ( M , L , r ) ) ~ < N - - n - ~  b - - / .  

Combining t h e  l a s t  two f o r m u l a s ,  we s ee  t h a t  2r  - n - f g N - n + b - f ,  i . e ,  r - ~  , 

which  i s  what  was r e q u i r e d .  
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Remark 14. For K = C, b = -i Proposition 4 can also be derived from the Barth-Larsen 
theorem [9]. 

Remark 15. It is easy to construct examples showing that the estimate in Proposition 
4 is sharp (singular varieties for which equality holds in Theorem 6 can be constructed as 
cones with vertex pb over nonsingular ones). 

Remark 16. It is interesting to compare Proposition 4 with the famous classical result 
(first proved rigorously by Lewis apparently), in which conditions are not imposed on r, but 
instead it is assumed that L is a generic linear subspace. 

COROLLARY 13. If X ~ pn, then X does not contain linear subspaces of dimension greater 

than [~-~]. If X is not a hypersurface, then X does not contain projective hypersurfaces of 
~ - - ~  

~N ÷ b] 
dimension greater than L--~-- j. 
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